Advanced Servo Motion Mastery

plcsupport@onlineplcsupport.com

[image:]

[image:]

Contents
Lecture 1: Introduction	5
Lecture 2: File Conversion	5
Lecture 3: Understanding Emulator	6
Lecture 4: Emulation from Scratch	8
Lecture 5: Studio 5000 Emulation	10
Lecture 6: Emulating Gear Change Logic	11
Lecture 7: Troubleshooting a Servo Ring	11
Lecture 8: Inhibiting an Axis	17
Lecture 9: Inhibiting a kinetic 6000 Drive	18
Lecture 10: Motor Removal Troubleshooting	19
Lecture 11: Course Rate Update Timing (CUP)	20
Lecture 12: Tasks, Periodic and Continuous	20
Lecture 14: Trending a Servo Hookup Test	22
Lecture 15: Quick Start to Servo Tuning	23
Lecture 16: Tuning an S-Curve Movement from an Instruction	26
Lecture 17: Servo Acceleration Explained	27
Lecture 18: Servo S-Curve Jerks Explained	27
Lecture 19: Using the Conversion Constants Calculate Tool	28
20. Understand a Simple Mechanical Drive System and Convert	32
21. The Difference Between Linear Cams and Cubic Cams	33
22. Using a Servo Cam Editor	35
24. Motion Axis Time Cam Instruction Intro	36
25. Breakdown the Difference Between an Immediate and Pending MATC Use	41
26. MATC Logic Used with a Virtual Axis With Trouble Shooting	43
27. MATC Scaling Explained To Limit Confusion	45
28. MATC Instruction With A Natural Move Command	46
29. Servo Motion Mastery PCAM Intro	48
30. Servo Mastery PCAM Explained In Detail	53
31. Building a PCAM From Scratch	55
32. MAPC Common Issue With Master Reference	72
33. MAPC PC Bit explained	72
34. MAPC Adding Common Health Checks	72
35. Use scaling in an MAPC instruction	74
36. MAPC Cam Lock Position Function Talk - Not program and Show	75
37. MAPC Master Lock Position Function - Not program and Show	75
38. Difference In A MAPC and a MATC	76
39. Starting from Scratch	77
40. Setting up the Physical Axis	79
41. Adding elements for the state controls	80
42. Adding our first MAPC	83
43. Adding the Second MAPC for Cam Bending	89
44. Showing a More In-Depth View of the Cams Blended with Added Features	91
45. Using the MCCP Instruction	93
47. Using a MCCP and then Loading it into an MAPC Instruction For Use	94
48. MAOC Introduction	96
50. MAOC Cam Output Control	99
51. MAOC Compensation Usage Explained	100
52. MAOC Input Enable Feature (Input Cam)	105
53. MAOC Axis Setup - Avoid an ERR	108
54. MAOC Cam Used In a Linear	110
55. MAOC Code Explained	111
56. MAOC Update	112
57. Using a Axis StandStill Bit	115
58. Intro to a Coordinated Motion	116
59. Coordinated Motion Section	120
60. Coordinated Motion Section	123
Dwells	123
Zero Length Move	123
61. Coordinated Motion Section	125
62. Kinetix 6000 Inputs	128
63. Understanding Servo Registration	129
64. Length Detection Example (A deeper look into Registration)	130

[bookmark: _Toc136410226]Lecture 1: Introduction

[bookmark: _Toc136410227]Lecture 2: File Conversion

Simply rename the .txt file .ACD. Do not open or edit at all while it is a .txt. If you even open it in notepad it will be ruined, redownload.

[bookmark: _Toc136410228][image:]Lecture 3: Understanding Emulator

The version of the emulator must match the firmware version of your Logix Designer project.

[image:]To add a ‘board’ right click an open rack position and select create. Then select the board from the list of options. In this case we select ‘Controller’.

[image:]

[image:]

[bookmark: _Toc136410229]Lecture 4: Emulation from Scratch

From the RSLogix compiler create a new project and select processor type ‘Emulate’.

[image:][image:]The below listed files are available in the course folder.

[image:]

[image:]
Use Who Active to download to the running emulator.

At this point you can create a project as you normally would and run it.

[bookmark: _Toc136410230]Lecture 5: Studio 5000 Emulation

Pretty much the same as the RSLogix version.

[image:]

[bookmark: _Toc136410231]Lecture 6: Emulating Gear Change Logic

This section is more about downloading a project to the emulator, nothing about gear changing logic.

[image:]

[bookmark: _Toc136410232]Lecture 7: Troubleshooting a Servo Ring

Here we are talking about the proper setup of a servo ring what happens with a servo ring or CIP servo ring when the processes are powering up or when they are downloaded or whatever else the case may be. Begin by adding a motion card.

[image:]
[image:]

Next we want to add our motion controller (amp) under the SERCOS comm card.

[image:]

Remember that the node number you configure the driver for is what ever number you have dialed in on the front of the amp.

[image:]

Now we want to create a motion group and add an axis of type AXIS_SERVO_DRIVE.

[image:][image:]

And then link the servo axis and the controller together.

[image:]

Now add the motor that you are using.

[image:]

Under controller properties Date/Time check Enable Time Synchronization.

[image:]

The below table represents the natural scan order of the SERCOS. Active nodes refer to other motion controllers you may have on the network. Node = controller. Step 3 checks the nodes found on the network against those you have configured in the software. Step 4 is making sure you have your axis setup properly.

The effect of an error is that the SERCOS system does not transition states. Watch the Status box in the lower left area to monitor the state transitions. You can also select the axis name under Motion Group to check the fault status of that equipment.

[image:]

If everything has gone well you are ready to start and operate the axis.

[image:]

You can also view the numerical sequence on the front of the drive.

Fault message example.

[image:]

Here is the ring sequence for CIP systems.

[image:]

[bookmark: _Toc136410233]Lecture 8: Inhibiting an Axis

We are not talking about the servo controller hardware, rather we are talking about the servo axis in the motion group. Although in some cases you can inhibit the hardware by going to the properties dialog and selecting that check box. This topic is covered in another lesson.

So now we are going to look at a method by which you can inhibit a servo axis by means of a function in your ladder program. We do this using the SSV, setting system value.
SSV to Inhibit Axis
Class: Axis
Instance: Axis01 (the name of the axis in our motion group we wish to inhibit)
Attribute: Inhibit Axis
Source: (you must put in a tag, cannot use a digit. This is likely a tag you create for this purpose)

[image:]

So we have put in a couple of move statements to load the AxisEnableDisable tag with 1 or 0 which triggers the function.

When we run the function and load the tag with a 1 we see that the axis is inhibited.

[image:][image:]

Now we will look at disabling the hardware component.

SSV to Inhibit Axis
Class: 		Module
Instance: 	ModuleAxis_1 (the name of the axis in our motion group we wish to inhibit)
Attribute: 	Mode
Source: 	(you must put in a tag, cannot use a digit. This is likely a tag you create for this purpose)

Result is a processor fault.

[image:]

[bookmark: _Toc136410234]Lecture 9: Inhibiting a kinetic 6000 Drive

In this lecture we will concentrate on how to inhibit the module (hardware) itself. We are not going to do this by means of the property dialog (this method is not always available). We will use a code implementation.
[the “CurrentMode” tag is not available in all drives, check, your looking for inhibit/shutdown]

SSV to Inhibit Axis
Class: 		Module
Instance: 	ModuleAxis_1 (the name of the axis in our motion group we wish to inhibit)
Attribute: 	Mode
Source: 	Kinteix6000_CurrentMode

In this case changing the tag to the value 4 inhibits the drive.
[image:]

[image:]
[bookmark: _Toc136410235]Lecture 10: Motor Removal Troubleshooting

[image:]If an axis is inhibited and then goes into fault the system continues on, it is not concerned and is still fully functional. The IO Not Responding is good, not flashing.

But once we enable the axis if the fault still exist the system will indicate so and the IO Not Responding LED will blink.

As an example, we will remove the motor from our hardware configuration.
[image:][image:]At this point the axis is no longer faulted, the application understands there is no motor for the faulted drive to affect so it continues on. This can be handy in troubleshooting. When trying to track down an axis fault you can try removing the motor. If the axis comes back up as okay you may have a motor problem that was causing the axis fault.

Now we know how to disable an axis, disable the drive, and remove the motor from the possibilities.

[bookmark: _Toc136410236]Lecture 11: Course Rate Update Timing (CUP)

[image:]Whenever an application is using motion the first routine(s) processed is the motion group and the associated axis. The frequency at which the axis routines are solved is based on the CUP. The Course Rate Update (CUP) is defined as the milliseconds it takes to scan all the servos in the motion group, solve the logic, and update the drive positions, rates, torque, etc. This is how long that process takes. It is updated in .5 ms increments.

To determine the value you should use, a good rule of thumb is 1 ms per virtual axis, 0.5 ms per axis servo drive, and 2.0 ms per SERCOS physical axis. You may want to round up a ms.
Figure 1 Attribute tab of the Motion Group Properties.

Servo Drives (physical drives)
[image:]If running an L7 processor you can drop it down to 0.25 ms per axis.
If running an L6 processor you can drop it down to 0.5 ms per axis.
If running an L55 processor you can drop it down to 1.5 ms per axis.
If running an L5 processor you can drop it down to 2.0 ms per axis.

The above table assumes periodic task scanning. This is an interrupt with resume process.
L8 is a newer generation of drive and is likely faster than the rates above.
Needless to say improper timing entries can be a source of faults.

[bookmark: _Toc136410237]Lecture 12: Tasks, Periodic and Continuous

[image:]Keep in mind it is a two step process to execute a servo command; the first cycle will write the command it wants the drive to execute and the second cycle will execute the command.

A good idea is to have your axis processed at least 4 times faster (as often) than the other tasks not associated with servos.

[image:]On the Monitor tab of any tasks properties dialog you can check the actual scan time for that task.

On a SERCOS card you can check and adjust the Requested Packet Interval under the Connection tab.

Lecture 13: Servo Commissioning Testing

Axis properties Hookup tab.

[image:]
Marker Test: turn the motor shaft, the servo will determine the direction and make note. This is testing the marker of the decoder. When you press the button you will see the below dialog. When you turn the shaft the text “Executing” will change to “Command Complete”.

[image:]Test Feedback: enter a value for Test Increment in Position Units then press APPLY and then click the Test Feedback button. You are going to have to rotate the shaft that distance so do not enter too large a number. Once the drive has made the reading the “Executing” text will change to “Command Complete”. The result is that the feedback polarity is determined by the drive.

Test Command and Feedback: what this is going to do is turn the servo on and slowly increase the speed through a full rotation so that it can record the commutation. During this test watch the motor and confirm it is moving in the correct direction. The software will ask if the motor turned in the correct direction and it will adjust itself whether you say yes or no.

[bookmark: _Toc136410238]Lecture 14: Trending a Servo Hookup Test

Create a new trend, call it Hookup_Test. From chart properties Pens tab you can add the pen Axis01.ActualPosition. Set the x-axis to 15 seconds.

[image:]

Before you begin running the axis use the motion direct commands to home the axis (MAH). At this point you are ready to run the hookup test. Run all three tests from the previous lecture.

[bookmark: _Toc136410239]Lecture 15: Quick Start to Servo Tuning

Here we will auto tune the motor. Often times it is best to have an uncoupled motor when doing the auto tune.

[image:]

Click Start Tune. You may get some feedback from the algorithm asking that you make adjustments to things like speed. When the command completes you will get some feedback such as that shown below.
[image:]

[image:]

After an initial success you may wish to run it for a longer Travel Limit. Then use Motion Direct Commands to jog and make sure the motor seems to function properly (no high pitch or any such thing).

Axis properties has a Gains tab for adjustments.

[image:]

The Output tab can also be helpful. Sometimes, depending on the application, adjustments to torque force scaling can be helpful in obtaining a certain response.

[image:]

On the Gains tab click Manual Adjust to access a dialog which allows you to change gains while the motor is running. Same for Torque Force Scaling on the outputs tab. You can also add filtering.

[image:]

Systems that use CIP-Motion protocol often are easier to tune when you have Notch Filter Frequency enabled on the outputs tab.

The commands below allow you to run an auto tune and then apply the results from the ladder logic. These functions use the parameters you have in the system already (such as those discussed above).

[image:]

You can use a SSV to acquire or adjust specific values associated with tuning such as the example below.

[image:]

[bookmark: _Toc136410240]Lecture 16: Tuning an S-Curve Movement from an Instruction

How to set up a trend for tuning an S-curve. Systems with a large inertia may do better with an S-curve type acceleration. So the question is, how do we determine when the system is responding smoothly.

Start with a trend with the following parameters: .ActualPosition, .AverageVelocity, .TorqueFeedback. Note that TorqueFeedback is one of the parameters that will not appear in the list of parameters that can be plotted unless you have entered (requested) it in the Properties dialog under the Drive/Motor tab in the Real Time Axis Information area.

[image:]

Below plot shows the S characteristic.

[image:]

[image:]

The “S” shows up in position but it shows up much more strongly in velocity. The activity of changing position with an S-curve is strongly indicated in the velocity curve. The Jerk value in the MAM command as well as the accel decel rates modifies the curve. In the below case we went from 50 to 100 Jerk and then down to 10.

[image:]

The tradeoff is how long it takes a maneuver to complete as opposed to how smooth the transition is.

NOTE THAT ACCEL AND DECEL JERK VALUES DO NOT APPLY WHEN USING TRAPAZIOD.

However it is affected by accel/decel rates.

[bookmark: _Toc136410241]Lecture 17: Servo Acceleration Explained

This chapter clears up a few items from previous section.

[bookmark: _Toc136410242]Lecture 18: Servo S-Curve Jerks Explained

This lecture points out the difference between a S-Curve and a Trapizoid.
[bookmark: _Toc136410243]Lecture 19: Using the Conversion Constants Calculate Tool

What are we referring to when we speak of conversion constants? Drive Resolution under the Drive/Motor tab, Conversion Constant and Position Unwind under the Conversion tab. The values will always be dependent on the application. The tool we are going to examine can be helpful for determining these values.

[image:]

[image:]

You must be OFF LINE to use this tool. On the Drive/Motor tab click on the Calculate button. This will bring up a dialog called Calculate Position Parameters (next page).

[image:]

The units will match what you have configured for your application. Fill in the text boxes according to your applications needs and click on Calculate [? Update ?]. In the above example we want to move 120 mm per motor revolution. The tool calculates the three values we will have to enter into the setting on the two tabs shown on the previous page. This also applies to gear boxes, if we had a 3:1 gear box on our shaft in the above example we would enter the number 3 in the “per Motor Rev” text field (see below).

[image:]

Another use is for calculating the Position Unwind value. Let’s start with a 1:1 ratio…

[image:]

Now we want our shaft to rotate 360 degrees (rollover). Now click calculate.

[image:]

Now download this modified application and run… The shaft is going to turn 360 degrees. To do this access the Motion Direct Commands feature from the motion group Axis01. First issue the Reset Faults command (MAFR).

[image:]
[image:]

Now issue MSO for custom motor on (the motor will turn on). Next issue MAH for motion axis home. Then issue MSF for Motion Axis Off. Fill out the information as shown below. We want position at 360 and speed at 5. (the order of commands that worked was Motion Axis Home, Motion Servo On, enter parameters, Execute).

[image:]

You can monitor the move in the tag display.

[image:]
Another example, Belt Drive. You want the belt to run 500 mm and you have a 10:1 gear box. So one revolution of the drive will produce 10 revolutions of the GB. Putting the 10 in the “per Motor Rev.” field allows the application to take the GB into account when you click the calculate button. In the end, 10 turns of the GB output will produce 500 mm of movement. Servo Motion One (first course) may have some equations that will help here.

Note: if you are using a linear drive you will not get the lower text boxes in the calculate dialog (the unwind terms).

Unwind means that after moving for x units, the position is back to the starting point. For example, a servo is turning a wheel on a car. After traveling 360 degrees, it is back to where it started.
[bookmark: _Toc136410244]20. Understand a Simple Mechanical Drive System and Convert

Here we will look at conversion constants a little more. The below table is from course one. This is basicly doing what the calculator does.

[image:]
Note: just as the numerator is (3 GB)(48 Pully) the denominator is likely (1 GB)(40 Pully).
The equation is:
 (Counts/Motor Rev)*(left side of GB * left side of Pully) / (right side of GB * right side of Pully)

[bookmark: _Toc136410245]21. The Difference Between Linear Cams and Cubic Cams

[image:]

The Cam1Profile parameter reserved space for 40 points but the profile below only uses 12.

[image:]

[image:]

Below we have changed the TYPE of cam from Linear to Cubic. You can see it smooths it out for us. Much more practical.

[image:]

[bookmark: _Toc136410246][image:]22. Using a Servo Cam Editor

Make sure you are offline or you could invoke unexpected movement.

[image:]

[image:]
[bookmark: _Toc136410247]24. Motion Axis Time Cam Instruction Intro

Begin by making a new controller application.

[image:]

From the Motion Move tab select and add to program the Motion Axis Time Cam function block. Now add a motion group, we will call it ServoMastering. This is a virtual axis, name the tag VirtualAxis_01. In the controller properties Date/Time tab select Enable Time Synchronization, this allows the motion group to run properly. We will run with the below values.

[image:]

[image:]

[image:][image:]

[Note: CAM Profile tag must be an array.]
At this point we have made an axis, now we want to make the motion control. The “control” is just the tag name we give it. This value goes in the Motion Control field of the function block. Keep in mind the HELP system is an excellent reference for filling out the function block.

.EN – set when rung goes true, stays set until rung goes false.
.DN – set when the axis time cam instruction is successfully initiated, not when the movement is complete.
.ER – indicates when the instruction detects an error, such as if the axis is not configured. (examine error code).
.IP – in process bit set on positive rung transition and cleared when terminated.
.PC – process complete is cleared on positive rung transition and set in Once Execution Mode when the time leaves the time range defined by the current active cam profile.

Refer to troubleshooting techniques discussed in course one. Error code explanations can be found in help file under topic Motion Error Codes (.ERR). Refer to HELP file for a discussion on cam topics such as Camming Direction, Camming in the Same/Opposite Direction, Changing the Cam Profile, Changing the Camming Direction, and Specifying the Cam Profile.
[image:][image:][image:]

The above figure illustrates the order of operations. We will discuss MCCP coming up.

Now we will look at how to turn the axis on. The only way to do this with a virtual axis is to use the homing command, MAH. ServoActionStatus means the servo is on (first course). Now we want to start the cams.

You also want to stop the servo (MAS), do not leave the bit on. There are different types of stop. Here we will use Time Cam. Note that there could be other motion going on in the system so we have to select carefully.

[image:]
[image:]Now we want to create a cam profile and associate it with our MATC block. We are replacing the function MATC Cam Profile entry (started out as CAMProfile) with the first instance of that profile. Remember, CAMProfile is a control array.
(I think he means replace CAMProfile with first element of CAMProfile control array CAMProfile[0].)
Now we open the cam editor and enter our cam profile (click Apply).

[image:][image:]Now create a trend on the position and velocity parameters. Then download to the emulator. Make sure it is running.
Put the emulator in RUN mode. Toggle HMI_ServoSystem_On tag and then set HMI_CamStart to on. Next run the trend. We had the cam set to run once as opposed to continuous.

[image:]
[image:]
Now we are going to add a contact closure with the cam tag MATC_01.IP (in process). Toggle HMI_CamStart on/off and then set MATC_01.IP on (?). Now open the trend. We see that the cam cycles, runs continuously. We can adjust the distance scaling, try 100 and notice that the velocity has to increase to keep up with the cam timing.
[image:]

The time cam describes the distance you want to travel in the amount of time you want the move to take.
[bookmark: _Toc136410248]25. Breakdown the Difference Between an Immediate and Pending MATC Use

This topic falls under time cams. It is a different scenario. We have a small state machine with a time cam which itself runs another time cam twice. On our MATC function block (one of them) we see the parameter Execution Schedule set to pending (this is the second, the one that runs twice). This allows us to use the .TimeCamPendingStatus tag as a counter. At the last rung “it” is reset to another sequence. The program being used here is Timing_CAMs in TimingCAMs.ACD (exported as a graphic in same directory as SMM2).

[image:]

Sequence (blue) runs four times, waits 4 seconds, re-homes,

[image:]

Then in a lower rung it runs the first cam …
[image:]
Next it runs the pending cam twice …

[image:]

And concludes with …

[image:]

The idea here is to notice the difference between pending and immediate and how they affect the outputs.

[bookmark: _Toc136410249]26. MATC Logic Used with a Virtual Axis With Trouble Shooting

[image:]

In this lecture we will be discussing this key area of code.

[image:][image:]

To begin we start the application using the HMI_System_On tag. We are using the hardware application (not emulator) at the moment so we can create a fault by changing the MATC Distance Scaling parameter to 50 causing the motor to have to move too fast to keep up with the cam. This is a position error fault. A position error means you have tried to do something the servo is not capable of.
[image:]
In this case we have set really tight limits (figure to left).

If you are wondering if the error is with something like the limits or with the motor, amp, or cable you can reset and try jogging the motor. If it works you know those things are okay.
[image:]
Next we will try increasing the position error tolerance to 10.xxx, reset the fault, and run. It does run and does not generate a fault.

Make sure you try this type of troubleshooting before changing out the motor.
[image:]The errors we had on the last page while running the hardware will not appear when we do the same thing on the virtual axis. The virtual axis does not have those position error tolerances associated with it because there is no hardware.

When using a MATC cam you are basically specifying a length of time and a distance to cover in that timeframe. The software will drive the motor to the required speed. Be aware of the physical aspects of the settings you enter. And keep in mind the virtual axis will not generate many of the faults that the hardware will.

[bookmark: _Toc136410250]27. MATC Scaling Explained To Limit Confusion
Do not issue a command unless .ServoActionStatus is ON, otherwise your MATC would generate an error.
[image:]
In above graphic, by default, both the time and distance scaling parameters are set to 1. To scale a time cam profile enter a Time Scaling or Distance Scaling value other than 1. Increasing the time scaling value of a cam profile decreases the velocities and accelerations of the profile. To maintain the velocities and accelerations of the scaled profile approximately equal to those of the unscaled profile, the Time Scaling and Distance Scaling values should be equal. For example, if the Distance Scaling value of a profile is 2 then the Time Scaling value should also be 2 to maintain approximately equal velocities and accelerations during execution of the scaled time cam. Important: decreasing the Time Scaling value or increasing the Distance Scaling of a time cam increases the required velocities and accelerations of the profile. This can cause a motion fault if the capabilities of the drive are exceeded.

[image:]Before we run lets review what transpires in this cam profile. Keep in mind this is a time cam. When a cam profile is specified in a MATC instruction the Master Coordinate Value defined by the profile array takes on time units in seconds and the slave units are the slave values which take on the units of the slave servo. Contrast this to the fact that the time and distance scaling parameters are unitless, the values are basically used as multipliers to the cam profile. So the cam profile is relevant but at the same time the distance and time are more or less multipliers. This is what controls the velocity of the servo. The same is true for the speed and acceleration. So say we have a distance of 10 and a time of 1, what will happen? Toggle HMI_StartCam. We have the execution mode set to zero so it will run one time. Likewise, having execution mode set to continuous (1) will run the cam multiple times.

[image:]
Figure 2 one possible cam start logic.

MATC bits
.EN – set when rung goes true, stays set until rung goes false.
.DN – set when the axis time cam successfully initiated.
.ER – indicates when the instruction detects an error.
.IP – in process bit set on positive rung transition.
.PC – process complete is cleared on positive rung transition.

[bookmark: _Toc136410251]28. MATC Instruction With A Natural Move Command

[image:]

In this lecture we will add a ‘rolling time change’ to our time cam. We will add a couple of compute statements, one will be ProductPerMinTime (REAL) and the other MachineSpeed (DINT). We multiply MachineSpeed by 60 since we are working in seconds. Parameter MovementTimeScale will be REAL.

[image:]So now MotionMovementTime is used in the MATC block in the TimeScaling field. We call this a rolling system. And we initialize MachineSpeed at 250 (items per minute). You can try changing the distance, this will change the velocity of the servo motor.

[image:]
[image:]
[image:]

[bookmark: _Toc136410252]29. Servo Motion Mastery PCAM Intro

[image:]The topics of this lecture are the basics of a position cam and how to calculate a position cam. Here we are using the phase manager.

[image:]

[image:]
Figure 3 elements of a phased system.

[image:]

Figure 4 position cam Motion Calculate Cam Profile function block.

[image:]
Slave axis, in blue, is running relative to the master in red. Note we are plotting velocity.

[image:]
The MCCP cam being implemented, start and end slopes are both 1.87403 (on Motion Calculate Cam Profile [MCCP] function block, not cam table). This cam profile will be used by the Motion Axis Position Cam (MAPC) function block (not clear why they are not on separate states with MCCP coming first).

[image:]

First and foremost, the program calculates the cam using the MCCP block and that information will be used by the MAPC block. Click the ellipse in the MCCP block beside CAM / RunCam and the Cam Editor appears (shown above). Note the Start Slope and End Slope entries at MCCP cam profile above. Now in the MACP block click the ellipse beside the CamProfile / StartProfile[0] entry to see the cam profile below.

[image:]
As soon as the position cam indexes and the IP bit goes true it will transition to the next state. The code is set up so no move may be in progress, CAM calc must be complete, and the move begins. Implies that MCCP fires off MAPC. Need to know the link between MCCP and MAPC, they do not seem to access the same “profile” arrays. Consider the code at states 20 and beyond below. The trend shows the result.

[image:]

[image:]

So the IP and SEGMENT terms are what is used to transition. This code oscillates between states 20 and 30. MPAC1.SEGMENT toggles as well. The trend plot on next page shows velocities and positions.

[image:]

[image:]Here we are looking at velocity only, this can help us identify errors or areas in need of improvement.

[image:]

The timing of the servos is really the key to the system. Also consider the course rate update of the master (axis) group as it plays a role in the calculations. Find this value in the properties of motion group MT1. In this case we are using 2 ms. (We are running virtual axis).

[image:][image:]

Timing and Course Update Rate are the keys to servo motion systems, examine them carefully.
Note that it is not necessary to use the MCCP block, you can run MAPC with a hard coded cam (see below).
This method is used when you have to adjust CAMs on the fly. See lessons below for more on this topic.
[bookmark: _Toc136410253]30. Servo Mastery PCAM Explained In Detail

At this point we have moved the code above (ch 29) into a program without the phase structure.
Here we are still using a virtual axis running a motion axis position cam (MAPC). In this module we will examine what have done above at a slower pace. In lecture 31 below we will build a program from scratch, make a position cam, use the position cam (using real hardware, not emulator). This is a simplified system. Now let’s look at the cam used in MACP, ellipse button associated with cam profile.

[image:]

[image:]In this case Axis1(the slave) is linear and the Conveyor is a rotary (cubic?). Master axis is moving from zero to thirty and the cam is controlling the slave axis to the blue line (slave is following the master). So we can see that the position of the master axis determines the position of the slave axis by means of the table. Now we are going to use the Motion Axis Move command to move to position 50 at a speed of 1 (slowly). We should see the shape of the cam represented on the trend. Light color is master (running), blue is the slave (following). Green is the velocity. So we see that the blue line in the trend resembles the cam profile. As the master goes from 0 to 30 (in this case) it will the slave axis (axis1) will follow according to the blue line in the cam profile. The position trend should look like the blue cam line. In this first example we tell the master (conveyor) to run to position 50, but the slave (axis1) is only programmed (cammed) to follow to 30. So it will stay in place as master goes above 30.
[image:]
[image:]
This is a second run where we increased the speed of the conveyor. We can see that the cam caused the speed of the slave (axis1) to greatly increase so it can keep up. The velocity lines are sharper.

[bookmark: _Toc136410254]31. Building a PCAM From Scratch

In this lecture we will build an application with a cam from scratch. The name is ServoAxis_PositionCam. We will create a periodic task so that we can better time the system.
[image:]

In this case we will create a periodic task, this allows us to better time the system, particularly in this example.
[image:]

[image:]Next we add some IO as you see in this graphic.
[image:]
Next create a motion group.
[image:]

Now create the servo drive, call it Pusher. This is a physical drive [AXIS_SERVO_DRIVE].
[image:]

Now create a virtual drive called Conveyor.
[image:]

An important step, go to controller properties Date/Time tab and enable time synchronization as shown below.

[image:]

Now go to the Pusher axis properties and give it an associated module, the one down in the hardware IO list (Kinetic_6000).

[image:]
Now go to the Drive/Motor tab and select a motor.

[image:]

Also select the Real Time Axis Information attributes, in this case we will use Position Error and Velocity Feedback. In this case we do not want to use Drive Enable Input Checking so uncheck it.

[image:]
Below is the value of the conversion constant we will use in the Pusher case. Recall that the value of the conversion factor is determined, to some extent, by the application.

[image:]

Now we do the same for the Conveyor. Select positioning mode Rotary and enter 36000 for Position Unwind. This means the axis values will reset after each 360 degree rotation. Use 10000 for conversion constant.

[image:]
Position unwind is 10,000 feedback counts/1 position units times 360 degrees for the axis to return to the “home” position. This equals 3.6M.

Now go to the dynamics tab of the Conveyor properties dialog. We have to enter values for the various max and min setting. Since this is a virtual drive the values entered do not have to be realistic (like those shown below).
[image:]
Now click both Calculate buttons and make an entry on the slider and then click OK.

[image:]

[image:]

These calculations are based on the max and min values we entered. This will modify the values we had entered.

[image:]

Now open the Main Routine so we can create some ladder logic. Go to the Motion State tab to select the motion function blocks.

[image:]

We will want to create Home and an On rungs.

[image:]

Where …

[image:][image:]

[image:]
We want to add some NC rungs in front of our homing function blocks (MAH) so we do not re-home an already homed axis. There are several tags that can do this, a good one might be Conveyor.HomedStatus (same for pusher). But the simplest way is to use a one shot. Note that our one shot is declared as SystemONS with data type BOOL and is a control array of 1 dimension (next page).

[image:][image:][image:]

[image:]

Now we write a rung to test the .PC bit (.ProcessComplete) to make sure both have come on and have completed homing. Then we want to check the .ServoActionStatus bit to be sure they report active. If all are true we can start the cam.

[image:]

Where HMI_CamStart is a BOOL. Now add a one shot and a position cam function block, MAPC.

[image:]
Create these other parameters…

[image:][image:]

Now we have …

[image:]

At this point we can review the help file for some details…
The function block is filled out below.
[image:]
[image:]

[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]

So now we need to put in a cam profile. The cam profile needs to have depth, we have to make space for the number of instances we plan to use. In this case we’ll use 100.

[image:]

[image:][image:]

Select the initial element in the MAPC_Cam Profile entry.

[image:][image:]
We could open the cam editor and type the points in manually, but it can also be done through Excel using the cell drag tool. You can paste into a blank cam table. Start by using the cubic cam. Next create a rung to run the cam. In this case we will use Motion Axis Move (MAM). We are going to run the master cam which is the conveyor. Notice MAPC Cam Profile, the array has 100 members but you always reference the first position (zero) in this position (naming field).
[image:]

The move type help file can be useful.

[image:]
[image:][image:]

What to do if you have an error or fault? Right click on the Motion Control Entry in MAPC and click on Monitor “SystemMAPC” which will take you to the tag values. Look up your error code in the help file.

This is a test run of our first cam.
[image:]

[image:][image:][image:]Now we have edited the cam so it more closely resembles a pusher.

Now we have modified the cam to take out some of the spikes.
[image:]

The video shows a version of the code where the master axis is reset once it hits 40 so the process repeats.

[image:]
[bookmark: _Toc136410255]32. MAPC Common Issue With Master Reference

[image:]In this lecture we will be discussing position cams. There is a known problem with position cams. This problem does occur in systems where the master cam is virtual. Say you are running a master cam and there is a physical motor connected. Using a Master Reference = Actual gives the system a more refined movement as opposed to Virtual.

Say you are in a situation where the motor is trying to hold itself in position and the cam profile senses that movement. So the IP bit of the Motion Axis Position Cam will trigger from IP (In Progress) to PC (Process Complete). It does this because it senses the movement.

If you have that problem it is a simple matter to change from Master Reference = Actual to Command and you will not have the problem. My guess is he means that in command mode the system waits for a command as opposed to monitoring physical movement and acting on that.

Also, any movement in the negative direction will cause the MAPC to transition from In Progress to Process Complete. This is a bug that RW knows about.

[bookmark: _Toc136410256]33. MAPC PC Bit explained

Here we are going to look further into the MAPC transition from IP to PC. “… as soon as the master axis goes out of the cam we see the transition from IP to PC.” What he means is if we try to access a table point outside of our points. If we have a table with 10 rows and the program tries to access point 11, outside the table, it will transition in this way, from IP to PC. (which it should it would seem?)

[bookmark: _Toc136410257]34. MAPC Adding Common Health Checks

We have a servo and we want to turn it on, but we do not want to turn it on if it is already running. And we also want to make sure it is healthy before we start it. We can use the GSV function block with Class Name: Module, Instance Name: Kinetic_6000, Attribute Name: FaultCode, and Destination Tag: ServoController_FaultCode. Check the destination tag and if it is not equal to zero we know we have a fault.

[image:]

[image:]

[image:]

So we can now check for the conditions and take proper action. [IF NOT FAULTED PROCEED]
[bookmark: _Toc136410258]35. Use scaling in an MAPC instruction

The MAPC has master and slave scaling features. We want to look at how these values effect the servos motion.

[image:]

As we might expect, changing the scale factor has a corresponding effect on the amplitude of the movement.
[image:][image:]

The way this works:
· making adjustments to the cycle time is done by changing the master scaling factor.
· Making adjustments to the amplitude is done by scaling the slave.
[bookmark: _Toc136410259]36. MAPC Cam Lock Position Function Talk - Not program and Show

Not much, kind of just babbling.
[bookmark: _Toc136410260]37. MAPC Master Lock Position Function - Not program and Show

Two points that are often times missed include Master Lock Position and Cam Lock Position. If the master axis is greater than the master lock position then it is not going to ‘pick-up’ until the next time the master axis is actually below that mark.

From Shane: Say the master axis is stopped at position 6 mm and the Master Lock Position is set at 5 mm and the cam is started at 5.5 mm. Then the cam profile (also known as the slave) would not (start?) until the master axis was below the master lock position.

Another example:

[image:]

[image:]

[bookmark: _Toc136410261]38. Difference In A MAPC and a MATC

Here we will discuss the differences between a time cam and a position cam.

First the position cam. We’ve spoken of how the IP and PC bits work, they are position based on the master, master and slave coincide based on position. It boils down to understanding the master reference, whether it is set for actual or command. Meaning, is it the actual value of the encoder coming back or is it the commanded value that the master is being told to do? Using the position of the master to control the slave, operating based on another servo (the master). (seems like actual would be the way to go)

Now the time cam. In this case it is the time which it takes to do something. If you look at the distance the servo has to travel and the amount of time it has to travel that distance, these two constraints are used to determine the acceleration and decelleration as well as the velocity of the servo. You are doing something in a set time frame.

If you are the only controller controlling the servos (master) then you need to enable time sychronization.

If your controller is a slave to another controller you do not need to enable time sychronization, you need your controller to be time sychronous with the other controller.

[bookmark: _Toc136410262][image:]39. Starting from Scratch

Here we begin a series of lectures on MAPC caming and how to blend cams together. We will work with a physical axis (Axis01) and a virtual axis. The name of this program is Servo_Blending_Example.acd.
[image:]
To begin we will add a routine which will represent the virtual axis.

[image:]

Notice below that we want to add a contact from the virtual axis so we use the drop down to access the virtual axis, do not confuse with the code module VirtualAxis. Also, when you create a virtual axis a lot of tags are generated.

[image:]

This rung will never execute due to the AFI statement. The purpose of the rung is to display the virtual axis average velocity and actual position so the programmer can see it. The .ServoActionStatus tag will only be true when the virtual axis is running. Note, it is usually better to monitor average velocity.

[image:]

Next we configure a rung for jogging.
[image:]

Now a command to stop the axis when we are not jogging.
[image:]

[bookmark: _Toc136410263]40. Setting up the Physical Axis

[image:]Now we are ready to start the programming for Axis01. First we add a new code module Axis01_MAPC_Controls.

[image:]

Rough out of the program so far: make sure axis is off, clear any faults, perform a shutdown reset, turn servo on.

[image:]

[bookmark: _Toc136410264]41. Adding elements for the state controls

Now we are going to add some controls to the state machine. To start we want to monitor our motion group. We will add a tag to the code that describes the motion group. This particular tag lets us check that the group is synchronized. This lets us know that the group is ready to operate and running the functions that follow will not cause a fault.

[image:]

This next tag lets us check that the instruction actually did happen. To do this we check the Done bit.

[image:]

Now we would like a more robost method of reseting our state machine to zero, we do not want to depend only on the first scan rung so we are going to augment that rung. We will add a CLR (clear) function block. So now there are two possible ways of resetting the state machine, the first is the first scan function, the second is if a shutdown happens or if a fault happens. Under these conditions we would want to stop control and stop motion. So our first rung now looks like this.

[image:]
Next, in the below group, we want to make sure that we are only resetting one at a time. The group currently looks like this…

[image:]

Now we are going to say, if it is faulted we will reset the fault only and if it is shut down, we will only activate the Motion Axis Shutdown function. Notice that if it is a shutdown we only want to activate the Motion Axis Shutdown Reset if we are not faulted. So we add the EQU statement to check for a zero in the fault register. It would actually be rare that a fault and shutdown happen at the same time. Our code block now looks like this…

[image:]

We are also going to add a tag on rung 3 which ensures that the motion group is synced before we turn on the servo and advance to the next group.

[image:]

We have also added a ladder to rung 1 which forces the ServoState[3] to 2 when the Axis01_OnPB is not being pressed.

[image:]

Another tag is added to ensure that if the Axis01_.ServoActionStatus is on we can cut it back off.

[image:]

Application to this point.

[image:]

[bookmark: _Toc136410265][image:]42. Adding our first MAPC

We add a new state at the bottom and add a new tag.

We begin with MAPC, the slave axis is Axis01, the master axis is Virtual_Axis, we will call it MAPCMotion_Control and give it a dimension of 3 as we will need several.

[image:]

[image:][image:]

Below the help file for Direction is listed. We will use Same. Next we will have to create a cam profile, we will declare the tag MAPC_CamProfileONE. The remaining entries are shown in the graphic below.

[image:]
[image:]
[image:]
Next we will build up the cam profile. Below is our first draft. Note the velocity (red line) is kind of extreme.

[image:]

We have also added a ladder to get us to the next state. The rung we are adding executes the MACP block but then immediately goes to state 4. To run, remove Axis01.ServoActionStatus at rung 1 and toggle Servo_Axis01_SystemStart also on rung 1. Click [image:] to compile.

[image:]

Now go up to rung 1 and toggle Servo_Axis01_SystemStart to run the cam.

We will want to monitor some tags like average velocity, we want average virtual velocity greater than 0 (use “1” in GRT block) before we execute the Motion Axis Position Cam (MAPC) instruction. This code modification is shown on the next page. Again, this greater than instruction is ensuring the virtual axis is on and moving before we execute the MAPC instruction.

In this case the virtual axis is the master which Axis01 will follow according to the entries in the slave column.

[image:]
Note that we need to verify that the virtual axis is actually on. To do this we can monitor the velocity of the virtual axis. We can view the virtual axis code in the VirtualAxis module.

[image:]

Before we turn on the MAPC we want to check that the Virtual_Axis.AverageVelocity is greater than zero.

[image:]

Note that in this case the master axis is virtual. Now run the virtual axis from the VirtualAxis_Jog contact in the VirtualAxis code module. So when we ran the virtual axis is triggered a fault, we will modify the curve to soften the movement.

[image:]
We try running again and find that we are faulting on a position error. Open the Axis Properties for Axis01 and increase the position error to 20.0.

[image:]

Now set up a trend. Add the actual and command position tags. Set the time scale to 45 seconds.
[image:]
[image:]

[image:][image:]

[bookmark: _Toc136410266]43. Adding the Second MAPC for Cam Bending

At this point there have been changes to the program in order to add the next MAPC. These changes are outlined in the next paragraphs.

[image:]

Changing to a rotary axis and Setting the axis to roll over (position unwind) to 360 degrees saves us from having to home the axis.

[image:]

In the above graphic we have changed the virtual axis speed to 10 (decreased).

[image:]

[image:]Above is the rung we are adding. Note below that we are using the next cam profile, [2]. Start with 1-to-1 scaling and execution mode of once and schedule of pending. Master Lock Position and Cam Lock Position refer to the position value to be used as the “lock” point. In this case our highest master value is 110.66 so we choose 111.0 for our lock position. It is a point outside the range of movement but also where we want the axis to stop movement. (lock up) We are using the same 111.0 for Cam.
[image:]We are going to add some logic to our rung. First, we want to wait for the MAPC to complete (.PC) and then we will move a 3 into the CurrentState variable so we can repeat/loop.

[image:]

We will also add a pending status, we want to know if the axis is in action. We can tell this via tag Axis01.PositionCamPendingStatus. Next we add a latch for second cam active.Figure 5 selecting master and cam lock position.

[image:]
We will also have to add the SecondCam_Active latch to rung 4.

[image:]

[bookmark: _Toc136410267]44. Showing a More In-Depth View of the Cams Blended with Added Features

“Blending” seems to refer to moving back and forth between two states each with its own MAPC function block. The key is to wait until one is done before starting the other, this is done with status bits, see above. So you can have two (or more?) axis running back to back presumably against the same virtual master. The transition between the two has to be seamless. Now we will run the below two cams and inspect the trend.
Blending time cams works the same way.

[image:][image:]

[image:]
Looks good.
Question is, how does this happen? Look at the first MAPC function block, it is set for
Execution Mode: Once and
Execution Schedule: Immediate.

[image:]
	

[image:]Now the second MAPC instruction is set up for…
Execution Mode: Once and
Execution Schedule: Pending.

Important note: this only works because of the SecondCam_Active discrete bit “blocking” MAPC 2 until MAPC 1 is compete. Otherwise MAPC 2 would run continuously even with execution schedule set to pending.

[image:]

[bookmark: _Toc136410268]45. Using the MCCP Instruction
Note that a CAM and a CAM Profile are not the same thing. The CAM Profile collects the data from the CAM and runs it. You can make changes to the CAM array but they will not be loaded into the CAM Profile until you fire the MCCP instruction. Also be careful of the Length field of the MCCP instruction, you can build a deeper cam. This section talks about loading new values into the CAM Profile during run time using the MOV command.

[image:]

We’ve added to the UDT.
[image:]

Now, what are the elements which make up the cam? We are not talking about the Cam Profile because we do not build the cam profile, we build the cam and load the cam profile.

[image:]
Segment Type is the Linear or Cubic entry. Master and Slave are position entries.
[bookmark: _Toc136410269]47. Using a MCCP and then Loading it into an MAPC Instruction For Use

The idea of creating a CAM is to load it into a MATC or a MAPC. So how do we do that? We built a cam with MCCP, now how do we use that cam with the MCCP Cam Profile? The final CAM Profile we build we want to use in either a MATC or MAPC. Note that the axis cannot be running when you change the cam since you would be changing the dynamics of the servo.

[image:]
Below code shows how to manipulate the cam values in run-time.
[image:]
The above cam value manipulation code can be repeated for further configurations.

[image:]

[image:]
[bookmark: _Toc136410270]48. MAOC Introduction

MAOC is Motion Arm Output Cam. It is used in conjunction with motion to control output such as bit or IO you want to fire when the servo reaches a certain position.

Below dialog is the CAM of a MAOC instruction.
[image:]
Below are the field headings.
[image:]
[image:]
First column, Output Bit. Outputs associated with the instruction, note the Output, Input, and Output Cam fields.
Latch Type: Position & Enable, Inactive, Position, and Position & Enable.
Latch Type Position is associated with Left Position.
Unlatch Type Position is associated with Right Position.
If LatchType is set to Inactive the output bit is left unchanged.
Note output bits are reset when the enable bit becomes inactive.
Position and Enable means the output is reset when the axis position leaves the compensated range (cam range) and the enable bit becomes inactive (?).
For Unlatch Type Duration and Enable the output bit is reset when the duration expires and the enable bit becomes inactive.
Duration means you want to keep the bit on for a set time.
Duration and Enable means both are active. It sounds like “enabled” means if the other output bit in the cam is “on” the action of the bit you are configuring will take place.
More on this below.

	Latch Type
[image:]
	Unlatch Type
[image:]
	
	

[image:]

Here red is the master cam which the output cam follows. Remember, on the trend the vertical axis is position of the master cam. Blue is the output bit, from the table we see it should be coming on at .25, off at .5, on again at .75, and off at 1. It does seem to be following that pattern. Now output bit 1; it should come on at .5 and off at 1, and it has another line that says come on at .65 and off at .75. Not seeing this, may have to do with enable bits?
 [image:]

Looking at the traces on the Output Cam we see everything seems correct.

[bookmark: _Toc136410271]50. MAOC Cam Output Control
Regarding outputs, if they are aliased to an output card and are active, meaning being driven by the cam, and the program is stopped (axis is stopped) suddenly (abnormally) the output remains high (or whatever the driven state is). Note that during this time the.IP bit will be on. So it is necessary to write code to put the outputs in the desired safe state.

[image:]
[image:]

Writing the zero to the MAOC Output parameter sets the output bits to zero.

[image:]

[bookmark: _Toc136410272]51. MAOC Compensation Usage Explained

[image: A screenshot of a computer

Description automatically generated]

When you create the compensation tag, keep in mind the type is in the predefined group of UDTs. Compensation data type can be declared in the program tag scope.

[image: A screenshot of a computer

Description automatically generated with medium confidence]

[image: A picture containing text, screenshot, font, number

Description automatically generated]

Output Compensation: array indices correspond to output bit numbers, the minimum size of an array is determined by the highest compensated output bit. Each bit has the 6 settings below:
CycleTime:		Refers to pulse rising edge in Inverted & Pulsed compensation (see diagram)
DutyTime:		= (On-Duty Time)/(Cycle Time), on-duty time + pulse width
LatchDelay:		provides time delay compensation for the latch operation
Mode:			normal, inverted , pulsed, inverted & pulsed
Offset:			provides position compensation
UnLatchDelay:	provides time delay compensation for the unlatch operation (inoperative)

[image: A picture containing text, screenshot, line, number

Description automatically generated]
The cam range is defined by the left and right cam positions of the Output Cam element. The compensated cam range is defined by the cam range, offset, and latch and unlatch offsets. The latch and unlatch offsets are defined by the current speed v.
Latch Offset = v * Latch Delay				Unlatch Offset = v * Unlatch Delay
The resulting compensation offset can actually be larger than the difference between cam start and cam end position. The following equation illustrates the effect of the compensation values on the duration of an Output Cam element:		 Compensated Duration = Duration + Latch Delay - Unlatch Delay
	Normal
	The output bit is set, when the output of the latch and unlatch operation becomes active. The output bit is reset, when the output of the latch and unlatch operation becomes inactive.

	Inverted
	The output bit is set, when the output of the latch and unlatch operation becomes inactive. The output bit is reset, when the output of the latch and unlatch operation becomes active.

	Pulsed
	The output bit is pulsed, when the output of the latch and unlatch operation is active. The on-duty state of the pulse corresponds to the active state of the output bit. The output bit is reset, when the output of the latch and unlatch operation becomes inactive.

	Inverted & Pulsed
	The output bit is pulsed, when the output of the latch and unlatch operation is active. The on-duty state of the pulse corresponds to the inactive state of the output bit. The output bit is set, when the output of the latch and unlatch operation becomes inactive.

Below diagram illustrates the four modes described above.
[image: A picture containing text, screenshot, diagram, number

Description automatically generated]

The following diagram shows the effect of the selected unlatch type on the output bit for different compensated cam and enable bit combinations as function of position.
[image: A picture containing text, screenshot, number, diagram

Description automatically generated]
The following diagram shows the effect of the selected unlatch type on the output bit for different compensated cam and enable bit combinations as function of time.
[image: A picture containing text, screenshot, diagram, line

Description automatically generated]

The cam table from the program (sample below) will not necessarily show the effect of the above settings.

[image: A picture containing text, screenshot, line, number

Description automatically generated]

[image: A picture containing line, diagram, plot, text

Description automatically generated]
Bit firing for above cam with no compensation. With compensation on bit 1 would be firing very close to the Master Axis initial position (position 1 is from .5 to almost the rollover).

Now we will add compensation and delays via the code shown below (MAOC Slot0.ADC).
[image: A picture containing text, screenshot, parallel, font

Description automatically generated]

[image: A graph with a red line

Description automatically generated with low confidence]

Now, with compensation enabled, output 1 is firing very close to the beginning of cam 1. Here we have modified the compensation and delay values of the cam.

[bookmark: _Toc136410273]52. MAOC Input Enable Feature (Input Cam)

In this example our input cam is a parameter called Output_Cam.Input. Say we set our top three output cam rows to Position & Enable.

[image: A screenshot of a computer

Description automatically generated with low confidence]

Now we set the first three Output_Cam.Input values to 1, this will enable those bits.

[image: A close up of a wall

Description automatically generated with low confidence]

Now we run and check the Output_Cam.Output bits…

[image: A picture containing text, screenshot, font, line

Description automatically generated]

We find that bits 0, 1 and 2 are cycling. We can try to discern the pattern. Does it look like the cam profile? It appears that only bits 0 and 1 have a cam defined. Now we will change all Enable bits to “6”.

[image: A screenshot of a computer

Description automatically generated with medium confidence]

Now restart the servo but you must also restart/recycle the cam profile. We are interested in the bits set to Position and Enable for Latch/Unlatch.

[image: A screen shot of a computer

Description automatically generated with medium confidence]

The way we have the system configured we have no enables on (all are at 6) so we should not see any outputs responding. The positions set to 1 in the enable column will respond. We can run and actually see this in the code, the Output_Cam.Output value will change as the bit numbers which are responding to the cam change.

When all enable values are set to 6 no bits respond and Output_Cam.Output displays 10. Consider the Input_Cam.Input array, it has position 6 and beyond set to zero.

[image: A picture containing line, plot, parallel, diagram

Description automatically generated]
No outputs responding.
Now if we turn on Output_Cam.Input 6, set to 1, we will see different response.

[image: A picture containing text, screenshot, receipt, font

Description automatically generated]

We see cam outputs firing. So the bit number in the Enable column tells the system which Output_Cam.Input bit to look and and use it as the enable signal (1 being enable). That’s pretty much our Output_Cam.Input array.

[image: A picture containing line, plot, diagram, parallel

Description automatically generated]

Now we ask, what if our Enable Type bit is set to Inverted Input? This means invert whatever the value is at Output_Cam.Input[#] and use that value as the enable signal. I believe these values can be changed at run time, in some cases the block enable has to be cycled but maybe not this case.

[bookmark: _Toc136410274]53. MAOC Axis Setup - Avoid an ERR

Consider the motion planner Output Cam Execution Targets setting in the virtual axis properties dialog for the “Axis” being used with the MAOC command.

[image: A screenshot of a computer

Description automatically generated with medium confidence]

If we leave the 0 here we will fail on an error when we run because the MAOC instruction is telling the Axis (in this case virtual) that it has output cams to execute and time must be set aside to do so. You must have a value here which is large enough to accommodate the output cam. This applies to real axis as well.

[image: A screenshot of a computer

Description automatically generated with medium confidence]

[image: A screenshot of a computer

Description automatically generated with medium confidence]

[image:]

To fix this error, the motion planner execution target value should meet or exceed the value of Output_Cam.Input.

[bookmark: _Toc136410275]54. MAOC Cam Used In a Linear

What is the best application for a MAOC? Usually a rotary axis is used, this is because of the rollover (unwind value). Have a look at our emulated application…

[image: A screenshot of a computer

Description automatically generated with medium confidence]

So our position unwind is 200000 with a conversion constant of 8000 gives us 25 revolutions per reset/rollover.

[image: A screenshot of a computer program

Description automatically generated with medium confidence]
Now we have configured this linear axis to run to position 1000 and then the .PC bit will fire which will clear Axis[0].Axis_MAM[0].Enable and set Axis[0].Axis_MAM[1].Enable.

What Axis[0].Axis_MAM[1].Enable does is run back to zero. After which it will disable itself and enable the original axis so it can run to 1000 again. Process continues.

While this is happening a MAOC is firing off the positions. You can use the MAOC to do this but is it the best application for this instruction? Best way to implement this function? Maybe not.

Note that during the above scenario the MAOC Ececution Schedule is set to Bi-Directional. This tells MAOC to execute the cam in both directions.

[bookmark: _Toc136410276]55. MAOC Code Explained

Explanation of the MAOC code. Be aware of setting Position Reference, can be Command of Actual.
Actual = use the encoder of the motor, this is more accurate
Command = use the position commanded, most system use this command.

[image: A picture containing text, line, font, diagram

Description automatically generated]

Be aware of Motion Disable Output Cam, here we are invoking it when ActionStatus is off and the MAOC declaration tag is done (.ip = true). It is very important to issue this command in order to disable cam outputs, this is you putting the machine in a safe condition. Otherwise the outputs remain active after shutdown.

Moving a zero into Output_Cam.Output will shutdown the cam action (all disabled).
Output_Cam_Abs.Output is the same thing on the other axis.

[bookmark: _Toc136410277]56. MAOC Update

We will create a motion output cam using a MAOC instruction following the position of a servo to actually control an actual output card. In this exercise we are using a hardware / real servo axis. This is a position based system.

Item 1: make sure your output card is set up for Scheduled Data. Found in the cards properties dialog.

[image: A screenshot of a computer

Description automatically generated]

Schedule Data allows the program to go in and control the outputs through the MAOC command.

Note our Drive Resolution: 2000 Drive counts per Motor Rev is equal to the Conversion Constant so that we have one revolution per actual cycle.

[image: A screenshot of a computer

Description automatically generated]

[image: A screenshot of a computer

Description automatically generated]

This is the cam profile we will run.

[image: A screenshot of a computer

Description automatically generated with medium confidence]

Note Latch Type = Position and Unlatch Type = Duration, so you will trigger on position and unlatch after a certain duration.

[image: A picture containing text, line, screenshot, font

Description automatically generated]
Sawtooth is the master position rollover, green and blue are outputs.

[image: A picture containing text, line, diagram, font

Description automatically generated]
Above we have added a bit in parallel for moving zeros into the Output_Cam.Output and Output_Cam_Abs.Output bits which shutdown the physical outputs (safe state), see previous chapter. The new bit is just saying anytime Axis 0 Jog is not in progress and Output_Cam.Enable_Control.IP is in progress we can shutdown the output bits and issue the MDOC instruction (motion disarm output cam).

Key Points on MAOC:
· Be aware of how your axis is set up.
· When not running ISSUE MDOC TO SHUTOFF YOUR MAOC!

[bookmark: _Toc136410278]57. Using a Axis StandStill Bit

Say you want to make sure the servo is absolutely stopped. To achieve this by using VelocityStandStillStatus.
This status bit is telling you the servo has absolutely no velocity. But there will be times when the axis is moving very slowly and this will hang up your process. We can adjust the standstill window using SSV. You can see this effect when a servo is not tuned properly and is hunting for the setpoint.

[image: A picture containing text, screenshot, line, diagram

Description automatically generated]

[image: A screenshot of a computer

Description automatically generated]
[image: A picture containing text, screenshot, font, number

Description automatically generated]

[bookmark: _Toc136410279]58. Intro to a Coordinated Motion

From servo CS_XY we can see how our activity is set up.

[image: A screenshot of a computer

Description automatically generated with medium confidence]
[image: A screenshot of a computer

Description automatically generated with medium confidence]
[image: A screenshot of a computer

Description automatically generated with medium confidence]
[image: A screenshot of a computer

Description automatically generated]
[image: A screenshot of a computer

Description automatically generated with medium confidence]
[image: A screenshot of a computer

Description automatically generated]
[image: A screenshot of a computer

Description automatically generated]

And our plot…

[image: A green lines on a black background

Description automatically generated with low confidence]
[image: A screenshot of a computer

Description automatically generated with medium confidence]
[image: A screen shot of a computer

Description automatically generated with medium confidence]

This is what the same pen would look like as a time based trend…

[image: A picture containing screenshot, line, black

Description automatically generated]

Note that there are two pens, even in XY Plot mode they give different traces.

[image: A picture containing text, font, line, screenshot

Description automatically generated]

[bookmark: _Toc136410280]59. Coordinated Motion Section

[image: A screenshot of a computer

Description automatically generated]
Standard motion group.

[image: A screenshot of a computer

Description automatically generated with medium confidence]

Now configure the axis… The X and Y axis are virtual axis.

[image: A screenshot of a computer

Description automatically generated]

To create a cartesian axis system… Create a new tag of type COORDINATE_SYSTEM.
Coordinate System is really referring to Coordinated System.

[image: A screenshot of a computer

Description automatically generated with medium confidence]

[image: A screenshot of a computer

Description automatically generated]

[image: A screenshot of a computer

Description automatically generated]

Types of coordinated systems include …
[image: A screenshot of a computer

Description automatically generated with medium confidence]

The command for a circular movement is Motion Coordinated Circular Move (MCCM).

[image: A screenshot of a computer

Description automatically generated]
Our motion instruction has a new output bit, .AC. This stands for:

When you have a coordinated move instruction queued, the Active bit lets you know which instruction is controlling the motion. It sets when the coordinated move becomes active. It is reset when the Process Complete bit is set or when the instruction is stopped.

[bookmark: _Toc136410281]60. Coordinated Motion Section

Motion Coordinated Linear Move (MCLM)

Use the MCLM instruction to start a single or multi-dimensional linear coordinated move for the specified axes within a Cartesian coordinate system. You can define the new position as either absolute or incremental.

The Motion Coordinated Linear Move (MCLM) instruction performs a linear move using up to three (3) axes statically coupled as primary axes in a Cartesian coordinate system. You specify whether to use an absolute or incremental target position, the desired speed, maximum acceleration, maximum deceleration, acceleration jerk, deceleration jerk, and the units of each. The actual speed is a function of the programmed units of the speed (Units per sec, or % of Maximum, as configured for the coordinate system), and the combination of primary axes that are commanded to move. Each axis is commanded to move at a speed that allows all axes to reach the programmed endpoint (target position) at the same time.

[bookmark: _Toc136410282]Dwells
You have the option to program a dwell using Time Based Programming in either Time Driven Mode or MDSC Mode when a zero length move (see Zero Length Move below) is programmed. The acceleration, deceleration, and jerk parameters are ignored when a zero length move is programmed. Therefore, when in time driven mode, the duration of the dwell is in seconds. When in MDSC mode, the duration of the dwell is programmed in units of Master Distance.
In MDSC mode, the dwell starts either at the Master Lock Position or immediately, depending on the programmed Lock Direction parameter, and continues for a duration as specified in the Speed parameter.
[bookmark: _Toc136410283]Zero Length Move
In Master Driven Mode and Time Driven Mode, you have the option of configuring a move with a Slave distance increment of zero (or a move with the same target and current position). If speed is specified in Master Units, the move remains active until the specified Master distance has been traversed. Use this type of move to generate a dwell in a multi-segment path move.
Similarly, when you program the move time directly in seconds in Time Driven Mode, a move of the duration of X seconds with a zero departure results in a programmed delay of the specified time.
Instructions with zero length cause velocity of the multi-axis instruction preceding the one with zero length to decelerate to zero at its endpoint. To avoid this behavior, it is suggested that you eliminated moves with zero length from your program.

[image: A screenshot of a computer

Description automatically generated][image: A picture containing text, number, parallel, document

Description automatically generated]

In our example the MCLM instruction uses indirect addressing for the Move Type tag. What they are doing is changing between type 0 (absolute) and type 1 (incremental) depending on which line segment is being calculated and drawn.

[image: A screenshot of a computer program

Description automatically generated with low confidence]

[bookmark: _Toc136410284]61. Coordinated Motion Section

We begin the Run_Example_CirDSqr module by homing the two axis. Cycle Stop PB will do the same.

[image: A picture containing text, font, line, number

Description automatically generated]

Once homing is complete we transition to MotionCircleDiamondSquare.

[image: A screenshot of a computer

Description automatically generated with medium confidence]

The FAL instructions make use of parameters FAL51.POS as an index into the path array. But what is it? Note FAL51 is the name of the control tag.

[image: A close-up of a grey wall

Description automatically generated with low confidence]

If you follow the DestPath[#].Position[#] parameter in the program tags area you’ll see that the path entries change as you move through the DestPath[] index.

[image: A picture containing circle, line, screenshot, colorfulness

Description automatically generated]

What happened here? The course rate update and the speed settings we have entered are not capable of creating the path trace we want. Note that Termination Type directly effects the course rate update (?). Basically, the x and y axis have to move so fast to make the speed they cannot create the trace we want.

[image: A screenshot of a computer

Description automatically generated with medium confidence]
[image: A picture containing text, font, line, number

Description automatically generated]Here we use SSV to adjust the value of CommandPositionTolerance for our coordinated axis.

The commands to here give us our path. Now we will jump to DrawAlongPath2D passing some parameters.

Note that the blocks will not execute if PathError=T.

[image:]

[image: A picture containing text, font, screenshot, line

Description automatically generated]Prevents a pending move from being queued up if a move is already taking place.

[image: A picture containing text, font, colorfulness

Description automatically generated]The way we tell if a move is in process is the IP bit.

[image:]
[image: A screen shot of a computer screen

Description automatically generated with low confidence]

[image: A screenshot of a computer

Description automatically generated with medium confidence]

[bookmark: _Toc136410285]62. Kinetix 6000 Inputs

[image: A close-up of a circuit board

Description automatically generated with medium confidence]

[image: A picture containing text, number, screenshot, receipt

Description automatically generated]
[image: A picture containing text, diagram, line, screenshot

Description automatically generated]
[bookmark: _Toc136410286]63. Understanding Servo Registration

Here we will look at the Motion Arm Registration (MAR) and Motion Disarm Registration (MDR) instructions.

[image: A screenshot of a computer

Description automatically generated]
[image: A screenshot of a computer

Description automatically generated with medium confidence]

We can configure the routine to run on the event trigger “Axis Registration 1”. TRN_Servo is the tag associated with the physical axis.

Again, our routine triggers on the registration event.

[image: A screenshot of a computer

Description automatically generated with medium confidence]
Key point is that the MAR instruction has to be enabled/re-armed each time you have to use it. This arming action tells the drive to monitor the registration bit more frequently, assigns it to a task running at a higher frequency. So trying to use the registration input when not armed is dicy at best, could miss the signal. Arm the MAR instruction each time you need to use it.

The MAR IP bit has to register each time you use the MAR instruction or the next time you try to use it the function will not preform properly. Register IP, register DN, and then re-arm for next event.

[bookmark: _Toc136410287]64. Length Detection Example (A deeper look into Registration)

[image: A screenshot of a computer

Description automatically generated]
Bottom rung: we get the servo position, which at this point is the registration position, when TRN_Servo_MAR activity is complete. We will use this value in the product tracking routine, this is an event driven task on the registration input of the servo we are running. The idea here is we using this value in a calculation to determine the product length (this is an oversimplified example, an actual length measurement application would be much more involved).
[image:]

[image: A screen shot of a computer screen

Description automatically generated with low confidence]
Trend of the length measurement application.

[image: A screenshot of a computer

Description automatically generated]
Length measurement code. This is not the entire application. Takes position each time .PC comes on.

[image: A screenshot of a computer program

Description automatically generated with low confidence]
RW: If your application requires rapid and continuous detection of a registration sensor, we recommend using this logic.

65 Servo Registration Using a Photo-Eye (Real-World Design)
The modified code below more closely suits a real-world application. The registration is now part of the mechanism, so we get consistent length even when we sow r speed the drive.

[image: A screenshot of a computer

Description automatically generated with medium confidence]
Improved application more closely resembling a real-world application.

Remember, event must be armed each time the input is going to fire. And every registration application will be unique and reflect the real-world process.

66. Servo Home Failed Because a Servo Event Armed
What happens if you try to home your servo and there is an armed registration? You will get a fault. You cannot home an axis which is in registration.

[image:]

Here is a workaround using direct motion toolbox.

Right click on axis, select Motion Direct Commands.
Select Motion Disarm Registration (MDR) from the left hand pane tree.
Select the Input Number to correspond to the number being used in the MAR instruction.

[image: A screenshot of a computer

Description automatically generated with medium confidence]
Click the Register button on the Motion Direct Command dialog.
Now select the MAH command in Motion Direct Command dialog and click on Execute.

Now, what is your registration position when you capture it?
[image:]
It is essentially zero.

[image: A screenshot of a computer

Description automatically generated with low confidence]
This code modification, and the one on the following page, fixes the problem with homing described above.

[image: A computer screen shot of a computer

Description automatically generated with low confidence]

67. Closing Comments

He is discussing Advanced Servo Motion Mastery 2, a course which never came to fruition.

image5.png
Type: RSLogix Emulate 5000 EmuLogiv5868 Conlroller

Vendor. Allen-Bradley

Versior: [0 ~]
Stattup Mode:

Memory Size (KB
Periodic Save Interval
(Range: 0.5t 30 min)

Controller Name:

Femote Program

072

10 = I™ Enable Periodic Save

Last Loaded:

Bac

[] oo |

image95.png
Posiion Uris

| Postion Unts
Postion Unts

% Rated
% Rated

o (g]

Poly Hep

image96.png
Commands:

Qe MSO
@ S
@ ASD
@ asR
@ DO
% WOF
% DS
% HaFR
553 Motion Move
e 4ias
% e
% Al
@ am
% MAG

@ MCD
e

3 @
Lobel Operand =
e Eagyd
100

SpeedUnis Units e sec

Acoel Rale 000

AccslUnks Units persec?

DecslRaie 000

DecslUras Units persec?

Piofle Tiopezoidal 14
AccelJoi 7000

DecslJeik 000

ek U % of Tine

Merae Disabled =

4\ DANGER: Execuiing motion command with corioler in
Program o Run Mode may cause asis molio.

[Motion Group Shutdown |

[CEecue] (g] [Heb]

image97.png
AXI5_2 CommandPosiion

AXI5_2 CommandVelocty

[Tt e s p

image98.png

image99.png

image100.png
ILStariCam MATC PC

image101.png
CPT-

Compute

Dest ProductPerMin_Time
18000.0«

Expression MachineSpeed*60

Compute
Dest

CPT-

MovementTimeScale
1.8¢]

Expression ProductPerMin_Time/1000/10

image102.png

image103.png
MAHDN Axis01 ServoActionStatus HMI_StartCam MotionMove CPT-

[e — — JE JE Compute
Dest ProductPerMin_Time
IntStartBit 18000.0
— Expression MachineSpeed*60
CPT-
Compute
Dest MovementTimeScale
18¢
Expression ProductPerMin_Time/1000/10
MATC
Motion Axis Time Cam FCEN>—
Axis Axis01
Motion Control MATC (DN w=
Direction 0
CER>—
Cam Profile CamProfile(0]
Distance Scaling Distance [IP>—
250+
Time Scaling MovementTimeScale [-(PC)—
18¢
Execution Mode 0
Execution Schedule Immediate
Lock Postion 0
Lock Direction 0
Instruction Mode Time Driven Mode

image104.png
By default, both the Time and Distance Scaling parameters are set to 1. To scale a time cam profile, enter a Time Scaling or Distance
Scaling value other than 1.

Increasing the Time Scaling value of a cam profile decreases the velocities and accelerations of the profile, while increasing the
Distance Scaling value increases the velocities and accelerations of the profile. To maintain the velocities and accelerations of the
Iscaled profile approximately equal to those of the unscaled profile, the Time Scaling and Distance Scaling values should be equal. For
example, if the Distance Scaling value of a profile is 2, the Time Scaling value should also be 2 to maintain approximately equal

velocities and accelerations during execution of the scaled time cam.

Important:
Decreasing the Time Scaling value or increasing the Distance Scaling of a time cam increases the required velocities and
accelerations of the profile. This can cause a motion fault if the capabilities of the drive system are exceeded

image6.png
Type: RSLogix Emulate 5000 EmuLogix5868 Controller
Vendor. AlenBradley

Conlinuous Task.

Dwell Tre ms) | 5]

CPU Afiity: B
CPU1 ~

Channel
Seiial Port: Nore |

< Back

image105.png

image106.png
Complete
Auto Pause
Pae Rt [ored

Resume Paused

image107.png

image108.png

image109.png

image110.png
tualVelocity

Master ActualVe

image111.png

image112.png
|

R H

§

il

Axs_Save_CMD Run

Axs_Swve_CMD Run e
e ate

AXS_Siave PostonCamPendngStatus MCCP_RP_ADN MAPC P
—) —

image113.png

image114.png
£QU-

Equal

Source A SEQ_CamSlave
30 ¢

Source B 10

HAPC
Hotion Axis Position Cam HEN—
Slave Axis AXIS_Slave ()
Master Axis AXIS_Master () sCDNDs=
Hotion Control MAPC
Direction 0 HCERY—
=~
Cam Profile StartProfile(0] () &CP>—}
Slave Scaling 1 ~=A
PC;
MCCH

L —— — —

no move is in progress Sm—mm——

CAM calculation moye

completes

e -
AXIS_Slave.PosiionCamPendingStatus (MCCP_RP_A.DN SHAPC P Y === ==

lotion Calculate Cam Profile
Motion Control MCCP_RP_A
Cam RunCam ()
Length

Start Slope

End Siope
-
-
Cag Pl
e — —
=

o~

H_ Move transition

pla Source 20

begins | Dest SEQ_CamSlave

image7.png
|| MATC Intro.ACD bt
| PCAM Intro_Emulated ACD.txt

[Servo_Motion_Mastery_101.ACD.txt

[ServoAxis_PositionCam.ACD.txt

|| ServoMastery_SimpleMATC_Emulated ACD.bt
[TimingCAMs.ACD.txt

|| TimingCAMsEmulation.ACD bt

image115.png
This is rung 5, state 20. —————HAPC-

Motion Axis Position Cam kEN)-—

Slave Axis AXIS_Siave ()
Master Axis ~ AXIS_Master () js(DN)ss
Motion Control MAPC1
Direction 0 KER—
Cam Profile RunProfile_A[0] (=) jeCIPes
Slave Scaling 1
HCPCY—
RT- HMCCP-
Greater Than (A>B) Motion Calculate Cam Profie (CENY——|
Source A’ MAP ENT lotion Control MCCP_RP_B
0¢ Cam RunCam (=) jsCDN)
Source B 0 Length 4
HCERY—
Start Slope 187403
End Siope 1.87403
CamProfie RunProfie_B ()

GRT- AXIS_Slave PostionCamPendingStatus MCCP_RP_BDN MAPC1.P MOV-
Greater Than (A>B) — — f—] —— - love
Source A MAPC1.SEGMENT Source 130
[1
Soces o Have not transitioned, MAPC1.SEGMENT D 550-“"‘5,";;.
is not greater then 0. 1

image116.png
Rung 5, State 20 but we have transitioned to state 30

£QU

Eoual

Source A SEQ_CamSiave
04

Source B 20

L 1

RT-

Greater Than (A=B)

Source A MAPC1.SEGMENT
2¢

Source B 0

GRT-

Greater Than (A>B)

Source A MAPC1.SEGMENT
2¢

Source B 0

AXIS_Slave PostionCamPendingStatus MCCP_RP_B.DN

[— —— f—] [

Notice MAPC1.SEGMENT > 2 and SEQ_CamSilave = 30.
At some point MAPC1.IP was also true and this rung

executed transitioning to state 30.

IAPC:
Wotion Axis Position Cam HCEN>—
Slave Axis AXIS_Skave ()
Master Axis ~ AXIS_Master [..) (DN s
Motion Control MAPC1
Direction 0 KER—
Cam Profile RunProfile_A[0] () [H(FY—
Slave Scaling 1

[CPCoe=

HCCP-

Hotion Calculate Cam Profie CEN>——
Hotion Control MCCP_RP_B
Cam RunCam (..) jsCDN e
Length 4

HCERY—
Start Slope 187403
End Siope 1.87403
CamProfie RunProfie_B ()
MAPC1 P HOV-

Move
Source 30

Dest SEQ_CamSlave

304

image117.png
/\\

image118.png
(1}

image119.png

image120.png
Cosme Updste Pesed: B | ma i 05 rcrements)

e)

Goneral Fak Type: | Non Mager k.~

Scan Times elapsed tme)
Mac B s) | Reset Max
Lat: %)

[= R

image121.png

image122.png

image123.png

image124.png
"

image8.png
Man-Bradey RSLogix Emulate 5000 Controller

2 v €— matchversion

Redundancy Enabled
Prostice_Emuste

1756A10 10-Siot CortrolLoge Chasss

C\RSLogs 5000\ Projects

Securty Aghoty | No Protection

Use only the selected Securty Authorty for Autherication and
Authonzsson

image125.png
e

471000 -
10 5 [Lower Number Yeekds Higher Prcesy)
500000 =

1) Dinable Automatc Outpus Processng To Reduce Task Overhead
17 kit Task

ok [canen | [pyon][e)

image126.png

image127.png
- 5 V0 Configuration
9 1756 Backplane, 1756-A10
$0 [0)1756-L73 Servoluis PositionCam
8 [2]1756-MI6SE Sercos
& s SERCOS Network

£, 10 2004-BCO1-MOI Kinetax 5000
& § [3)1756-ENBT/A Ethernet

s Ethemet

image128.png

image129.png

image130.png
New Az
New Cocrdinate System._.
Mondtor Group Tag

Fauk Help
Clear Motion Group Faults

G Pre
G Mo
-,__} Cut

image131.png

image132.png
e
(@) The Date and Time deplayed here is Cortroller local tme. ot woskstation local tme.
Use these fieids to corfigure Time atirbutes of the Cortroler

Set Date. Time and Zone from Wodkstation | &

Change Date snd Tme_| &

Adyust for Dayght Seving (+0000) &

A\ DANGER. ¥ sme synchronization is
Gatied onine, actve axes n any
controller n ths chassis. or any other
synchvonzed device, may expenence
unexpected moton Safety cortrobers may
fauk £ no other tme master exiats in the.
local chasss

Advanced

(o) [canen

image133.png
Node 0 -

image134.png
Lmts | Ofiet
{ OmveMoto” | Motor Feedback | AuxFeedback | Convemon |

Catalog Nusber
MPLB1520U V02

MPLB1510V-End
MPLB1510V-Hxx2
MPLE1S10V Hiod
MPLE1S10V- Vo2
MPLB1510V Vi
MPL81520U €02
MPL81520U £0d
MPL81S20U Hio2

image9.png
ControllerOrganizer ~ & X

=-&3 Controller Preatice_Emulate
Controller Tags
(3 Controller Fault Handler
(3 Power-Up Handler
-3 Tasks
=68 MainTask
£33 MainProgram
(3 Unscheduled Programs / Phases
-E3 Motion Groups
(3 Ungrouped Axes
(3 Add-On Instructions
-3 Data Types
£, User-Defined
- Cf, Strings
£, Add-On-Defined
- O, Predefined
% Module-Defined
3 Trends
-&3 VO Configuration
-8 1756 Backplane, 1756-A10
£9 [1] Emulator Preatice_Emulate

Emuator RSLogix Emuate 5000 Controller
21

Preatice_Emuiate]

1756-A10 10-Slot ControlLogix Chassis -

|ox|hP]'wy‘ Help

image135.png
=

Ampifier Catalog Mumber: (2084.8C01-M01
Motor Catalog Number: MPL-81520U-\io2

image136.png
Twe [D Gans | 0 Lmts Fat
| Genens | Moton Parver | Unts | OnveMotor | Motor Feedback | A Feedback

image137.png

image138.png
Moton Plannes | Unts Ic-—]m-u____,ll

image139.png
Xof Time:
ox

Manimum Acoslerstion Jed. 13389 11 Positon Urits/s™3

o) (comcet] [e]

image140.png

image141.png
Maemum Deceleration Jed 1010101

image142.png
¢ H ol ke M0 MSF S0 SR D0 IDF DS FR »
“» g Funcions.

image143.png
HMI_System_On MSO-
JE Motion Servo On o —CEN
) Axis Pusher [] juC DN s
Use_StateControl EQU SystemONS[5] Motion Control PusherMSO FHCER>—
e e Equal ———/ONs
Source A System_State
3e MOV-
Source B CurrentState[0] Move
g(_ Source CurrentState[1]
1e
Dest System_State
3¢
HMI_ServoHome SystemONS[0] MAH
1 E [ONS] Motion Axis Home fcen
Use_StateControl EQU ConveyorMAH ER PusherMAH ER PusherMSO DN axo':on Control ConveyorMAH yor (1 :E [E’Q);
f— gqual A SE f — — — | —— LCIPY—
ource lem_
_Smii a r(PC e
Source B CurrentState[1
1](. SystemONS([1] MAH
{ONs} Motion Axis Home CEND>—
Axis Pusher [___| = DN ==
Motion Control PusherMAH HER»>—
Fpy—
r(PC e

ConveyorMAH.PC PusherMAH.PC

MOV-

Move

Source CurrentState[2]
2e

Dest System_State

3e

image144.png

image10.png
o
€9 AB_VEP-1, 1789-A17/A Virtual Chassis
8 00, RSLogix 5000 Emulator, RSLSk_18_Template_ProcessL

02, RSLogix 5000 Emulator, YouTube_30Day_Project
03, RSLogix 5000 Emulator, Remote_Start

04, RSLogix 5000 Emulator, PLCC

05, RSLogix 5000 Emulator, FWW1_DRVL

06, RSLogix 5000 Emulator, FWW1_RHL

07, RSLogix 000 Emulator, SAFL

m

AB_VBP-1\ Set Project Path
Path in Project: <none>

Clear Project Path |

image145.png

image146.png

image147.png

image148.png
« 1 [Cancel
1495 _CONSUMED
1AS_GENERIC
J40S_GENERIC_DRVE oo]
1895_SERVD

AS_SERVD_DRIVE

ﬁi VIRTUAL
A 0

image149.png

image150.png

image151.png
JE JE JE JE

image152.png
H ol s ms me My mn me o e ook Motion move tab

image153.png

image154.png

image11.png
T Studio 5000® Logix Emulate™

Computer: |RAFCY3

0 1
RS LINX

Lo

For Help, press F1

image155.png
ConveyorMAHPC PusherMAHPC Conveyor ServoActionStatus Pusher ServoActionStatus.

HMI_CamStart

SystemONS[2]

HARC:

o ——] f—— f—— —

QU

IE
IE
Use_StateControl
\—q_*

Equal

Source A System_State

3¢

Source B CurrentState[2]

2¢

TonsT
fons}

Motion Axis Position Cam
Slave Axis
Master Axis

Motion Control ~ SystemMAPC

Direction

[-CEN;

[] (CERY—

Cam Profile MAPC_Cam{0] [..] jm(1P e

Slave Scaling
Master Scaling

Execution Mode

Execution Schedule Immediate

Master Lock Posttion

Cam Lock Position

Master Reference

Master Direction Forward Only

b Lo
1
0
0
0

Actual

Move

Dest

Source CurrentState[3]

10V-

3¢

System_State
3¢

image156.png

image157.png
?
?
?
?
”
?
?
n”
?
”
?
?
?
n”
?
”
?
?

image158.png
Direction UINT3Z Immediate | Relatve di ‘afr Have axs to the master sxs:
or Tag

Same - the slave axis position values are in the same sense as the

image159.png
Reverse - the current or previous direction of the position cam is reversed
on execution. When executed for the first time with Reverse selected, the
control defaults the direction to Opposite.

Unchanged - this allows other cam parameters to be changed without
altening the current or previous camming dwrection. When executed for the
first t:me with Unchanged selected, the control defaults the directon to

image160.png
W_m mmwmmwmm:—mmmm
e [EmemRmeem e ——

Immediate | Determines if the cam profile is executed only one time or repeatedty:
0 = Once - cam motion of slave axis starts only when the master axis
moves into the range defined by the start and end points of the cam profile.
When the master axss moves beyond the defined range cam motion on the
slave axis stops and the Process Complete bit is set. Slave motion does not
resume # the master axis moves back mnto the cam profile range.

1 = Continuous - Once startad the cam orofile is exacuted indefinkaly. This

image161.png
feature is useful in rotary apphcations where it is necessary that the cam
postion run contnuously m 8 rotary or reciprocating fashion.

2 = Persistent - When the Master Axis moves beyond the defined range,
cam motxon on the Slave Axis stops and the PositionCamLockStatus bit is.
cleared. Slave motion resumes i the opposite direct:on when the Master
Axis reverses and moves back into the cam profile range, at which time the
PostionCamiockStatus bit s set.

Executon VINT32 Immediate | Selects the method used to execute the cam profile. Options are:
0 = Immediate - The slave axis Mhﬂhh_—

image162.png
Immediate - The slave axis is smmedsately locked to the master axs
POSILON CAMMINg process begins.
- lets you blend a new positon cam execubon after an in
process postion cam 15 finished. When Pending is selected the following
are ignored: Master Axis, Master Lock Postion, and Master

only - the cam profile starts when the master postion crosses
dwrection.

Reverse only - the cam profile starts when the master position crosses
Lock Position in the reverse dwection.

Be-directional - the cam profile starts when the master position crosses
Lock Position in either dwrection.

C

image163.png
Pending s selected as the Execution Schedule value, then Master Lock
Postion is ignored.

image164.png
FRat [R e ——

Sets the master posibon reference to ether Command posibon or Actual
postion. If Pending is selected for the Execution Schedule value, then
Master Reference s ignored.

0 = Actual - slave axis motion is generated from the current position of the
master axis as measured by s encoder or other feedback device.

1 = Command - slave axis mation is generated from the deswred or
‘commanded positon of the master axis.

Thes determenes the directron of the master axis that generates slave motion
accordng to the cam profile.

Options are:

0 = Be-directional - slave axis can track the master axis in either direction.

image12.png
o o[] Action_ooo
MAH (Vaxisl, Vaxisl MAH);

ServosOn
N (] Action_008
MAH (Vaxis0O, VaxisO_MAH);

N [) Action_012
SR (Input_Sim, 0) ;|

(=]

Step_to_Next

Vaxisl.ServoActionStatus & Vaxis0.ServoActionStatus

View Options All Modules Help

Computer: | RAFCY30SW

0
RS LINX

For Help, press FL

() | Tran_o010
input_1

fperement. ratio_up

BS

(=) | Tran_017

input_0

ghutdown

B8

image165.png
Data Types:
CAM_PROFILE[100]

image166.png
seavwatoe

Data Types:

CAM_PROFILE[100]

(415_GENERIC
14XIS_GENERIC_DRIVE
AX15_SERVD
415_SERVO_DRIVE
IAXIS_VIRTUAL

B00L

FAMCUACT JANMITAD

Artay Dimensions
Dim 2 Dim 1 Dim 0

0 H [0 L]

[Z] Show Data Types by Groups

image167.png
Name:

Description:

Usage: [<nomal>

T e et

DataType: CAM_PROFILE[100] E]

9 Servaduis_PosiionCam v

Open CAM_PROFILE Configuration

image168.png
MAPC:

Wotion Axis Position Cam
Slave Axis Pusher ()
Master Axis Conveyor ()
lotion Control ~ SystemMAPC
Direction 0
CamProfle MAPC_Cami0] (.
Slave Scaiing 1
Master Scaing 1
Execution Mode 0
Execution Schedule ~Immediate
Master Lock Position [
Cam Lock Position 0
Master Reference Actual

Master Direction Forward Only

Fceny—
HCON>—
Hcery—
HoP—
Pe—

image169.png
TAPC:
Hotion Axis Position Cam
Slave Axis Pusher ()
Master Axis Conveyor [
lotion Control SystemMAPC
Direction 0

fum Profie | MAPC_Cam(0]

L ouibletandl haptnfcr sy SR

A il Show: CAM_PROFILE -
Name 4 DataType ~
WAPC_Cam,? CAM_PROFILE_
E' '+ MAPC_Cam(0] H "CAM_PROFILE
§ SR CAM_PROFILE
f crwarc_Camel CAM_PROFILE
§ -EhiAC canly CAM_PROFILE
§ G uapC Camig CAM_PROFILE
] F MAPC_Cam(s] CAM_PROFILE
U r MAPC_Cam{6] CAM_PROFILE
[8 5 mAPC Camil CAM PROFILE ™

[Contoler]
[Pogan]

image170.png
To Use This Move Type And Enter
Move an axis to an absolute position | Absolute 0
Move an axis a specified distance | Incremental 1

from where it is now

Move a Rotary axis to an absolute
position in the shortest direction
regardless of its current position

Rotary Shortest Path 2

Move a Rotary axis to an absolute Rotary Po 3
position in the positive direction
regardless of its current position
Move a Rotary axis to an absolute | Rotary Negative 4

position in the negative direction
regardless of its current position

Offset the master value of a
position cam to an absolute position

Absolute Master Offset 5

Offset the master value of a
position cam by an incremental
distance

Incremental Master 6
Offset

See Choose a Move Type for a Rotary Axis below for more information about

rotary moves.

image171.png
SystemMAPC P 1AL
JE 1 Motion Axis Move HCEn—
Axis Conveyor ()
Motion Control RunConveyor ((DN)—
Hove Type [J
HCER—
Position 50
HCP>—
Speed 2
Pe—
Speed Units Units per sec
Accel Rate 1000
AccelUnits Units per sec2
Decel Rate 1000
DecelUnits Units per sec2
Profile S-Curve
Accel Jerk 100
Decel Jerk 100
JerkUnits Units per sec3
Herge Disabled
lerge Speed 0
Lock Postion 0
Lock Direction 0
Event Distance 0
Calculated Data 0

image172.png
e A et ol i

= SystemMAPC Toeeh

SystemMAPC.AC

o

SystemMAPC.ACCEL

°

SystemMAPC. CalculatedD atatvailable

°

SystemMAPC.DECEL

SystemMAPC.DN

olk|o

SystemMAPC.EN

SystemMAPC.ER

oo

+ SystemMAPC.ERF

&

SystemMAPC EX

+ SystemMAPC.FLA 63753420,

SystemMAPC.IP

SystemMAPC.PC

+ SystemMAPC. SEGMENT

olo|e|r ||

+

SystemMAPC.STATE

+ SystemMAPC.STATUS

o

SystemMAPC. TrackingMaster

o

image173.png
—————APC.
Motion Axis Position Cam
Slave Axis Pusher ()

% Cutlnstruction

image174.png
master

image13.png
=y fasks
£8 MainTask
£ MainProgram
(3 Unscheduled Programs / Phases
=-£3 Motion Groups
(3 Ungrouped Axes
{3 Add-On Instructions
-3 Data Types
L, User-Defined
-E Strings
L3, Add-On-Defined
(5-Cf Predefined
L3, Module-Defined
3 Trends
-3 /0 Configuration

BT [/T756-L73 ServoMastery_Basics

[Catalog | Module Discovery [Favortes|

Enter Search Text for Module Type.

Moduie Type Category Fiters

Modue Type Vendor Fiters
Alen-Bradiey
Hardy Instruments, Inc.
Molex Incorporated
Phoenix Digtal Corporation

2 fuis Analog/Encoder Servo
2 Axis Analog/SS1 Servo
3 fvis SERCOS Interface
8 Auds SERCOS Interface

— 8 &is Genene SERCOS Interface _ _

7 of 132 Module Types Found

[T Close on Create

image175.png

image176.png
" Slave Position

image177.png

image178.png
11 [aster [Save [Type
7[170 260 [Lnear
18] 180|200 |Lnear
16[150 [140 |Lnear
20[200 00 [Liear
21210 00 [thear
2[20 [00_[cubic
B30 [00 [cube
24[240 (00 [cubic
25[250 00 [tiear
26250 00 |Liear
27[270 _[140 [tiear
26[250 200 |Liear
29[290 (280 [Liear
30[300 |20 |Lnear
31[310 |60 |Lnear
32[320 [200 |Lnear
33[330 (140 [Lnear

Master
% & £
« i "
Master. Posiion: Velociy: Acceleration: Jenk:
f7a5 Jrezm Joo oo oo

image179.png
HM|_System_On
JE

Use_StateControl

|

QU

Equal

Source A System_State
3¢

Source B CurrentState[0]
0¢

SystemONS[s]
f——ons,

HMI_ServoHome
L

Axis

Motion Servo On

Motion Control PusherMSO

1S0-
cen

[] mCONam
[CER>—

OV-

Source CurrentState[1]
14

System_State
3¢

Dest

MAH:

SystemONS[0]

Use_StateControl

|

Qu ConveyorMAHER PusherMAH ER

I

Equal

Source A System_State
3¢

Source B CurrentState[1]
1¢

ConveyorMAHPC PusherMAHPC Conveyor ServoActionStatus Pusher ServoActionStatus.

PusherlSO.DN

| s s

HMI_CamStart

{ONS }—ro

Motion Axis Home
Axis

Motion Control ConveyorMAH

SystemONS[1]

(en
[CON =
(HCERY—
HP>—

Conveyor [

r(Pc)I

HHAH

{ons}

Axis

Motion Axis Home.

Motion Control PusherMAH

fcen:

L] paConomm
Fery—
Hop—

Pusher

r(Pc)-

ConveyorMAH PC PusherMAH PC 10V-

—— f——{

SystemONS[2]

Source CurrentState[2]
24

Dest System State

3¢

MAPC-

2 | — —— f—— f—t— —

SystemMAPCP HMIStart_Conveyorliove
E

QU

IE
IE
Use_StateControl
\—q_*

Equal

Source A System_State
3¢

Source B CurrentState[2]
2¢

TonsT
fons}

Slave Axis
Master Axis
Motion Control
Direction

Cam Profile
Slave Scaling

Master Scaling
Execution Mode
Execution Schedule
Master Lock Posttion
Cam Lock Position

Master Reference

Motion Axis Position Cam

Pusher [

Conveyor [..]
SystemMAPC
0

RED

Jsconm
Hery—

Master Direction Forward Only

MAPC_Cam{0] [...] juc 1P

1
1
0
Immediate
0
0

Actual

Move
Source CurrentState[3]

Dest

10V-

3¢

System_State
3¢

3 — —
[t e |
| Equal

Source A System_State
3¢

Source B CurrentState[3]
3¢

Axis
Wove Type
Postion
Speed

Speed Unts.
Accel Rate
Decel Rate
Profile

Accel Jerk
Decel Jerk
Jerk Unis,
Merge

Merge Speed
Lock Position
Lock Direction

Event Distance
Calculated Data

Al
Wotion Axis Move becenioem:

Motion Control RunConveyor

Units per sec
AccelUnits Units per sec2

Decel Units Units per sec2

Units per sec3

(DN
[
CERY>—
0
P -
2
tcpe—

1000
1000
SCurve
100

100

Disabled
0
0

0
0
0

RunConveyor PC

V-

g
H

Source CurrentState(1]
Dest

14

System_State
3¢

OV-
Hove

Source CurrentState[0]
04

System_State
kR

Dest

image180.png
AAPC

Motion Axis Position Cam

Slave Axis Axis01 (L)
Master Axis Conveyor ()
Hotion Control Peam
Direction 1

CamProfie Cam_Profie(0] (=)
Slave Scaing 1

Master Scaing 1

Execution Mode Once
Execution Schedule Immediate
Master Lock Position 0

Cam Lock Position 0

Master Reference

Master Direction Forward Only

image181.png
GSV-

Get System Value
Class Name Modue.
instance Name Kineto_6000
Aftribute Name FauliCode
Dest ServoControler_FautCode
0

Not Equal

NEG-

ServoControler_Fauted

Source A ServoControler_FautCode

Source B

oe
0

image182.png
Not Equal

NEQ-

SV-
Get System Value
Csstiame Modue
Instance Name Sercos
Aftribute Name FaultCode
Dest Sercos_FaulCode
64778 ¢

Sercos_Fauted

Source A Sercos_FaulCode

Source B

4776 ¢f
0

image183.png
SV-

HMLAXiSOn Axis01 ServoActionStatus

W‘: AxisD1 AxisHomedStatus
S

B — et s |01}

Y — —(— _'—[eus"

ServaControler_Fauted [Sercos Fauted } | onso

Get System Value
Classhame Module
Instance Name _ Sercos
Attrbute Name FautCode
Dest Sercos_FaulCode
oe

- -
Sercos_Fauted

NEG-
Not Equal

Source A Sercos_FaulCode

Source B

ServoControler_Fauted | Sercas. Fauted } ONSI1]

Axis

Axis

od
3
so-
Moton Servo On
Axis Axis01 ()

Moton Control SO

Motion Axis Home.

Motion Control Conveyor_MAH

———An
Motion Axis Home.

Motion Control AxisO1_WAH

1Al

Conveyor ()

Axis01 ()

image184.png
Ganetst

(o
Descrption:

Siave_ScaligFactor

Base <) [Comeion)

End Siope o

CamProfie AxisO1AdvControl RunCami0] (=)

CPOJEN

Motion Control Axis01Control MAS(2)

TR
Motion Axis Position Cam [CEN;
Slave Axis Axis01 ()

Master Axis VirtuaMaster () (0N
Motion Control Axis01AdvControl MAPC[0]
Direction 1 e
Sanaie, AdlAGan RS () (<P—
Slave Scaing Save_ScaingFactor |

10§ f<re]
Master Scaling. Master_ScalingFactor 1

S0,

YmeTimE == G
Executon Scheduie necate
ssir Lock Poston o
CamLock Postion o
aster Reference o
WasterDrecton Forward Only

"
Woton s Stop
ey

image14.png
Type: 1756-M16SE 16 Asis SERCOS Interface
Vendor: Allen-Bradley

Name: EEER
Description:

Revision: |20 | 1

Open Module Properties

image185.png
2:1 ratio

image186.png
1:1 ratio

image187.png
) Untitied - Notepad
File Edit Format View Help

Master Axis is stopped position 6mm
starts after 6mm moving forward.

The instruction or cam profile will not lock until

the master axis reaches a position of 5mm as stated by the

master lock position.

Master Lock Position 5mm

Cam started at 5.5mm

Then the cam profile or in other words the slave servo would not until
the master axis was below the master lock position.

Axis position .0032 and slightly moving not at perfect zero .00000

image188.png
7 Untitled - Notepad
File Edit Format View Help

If the MAPC instruction is in an .IP state then no worries but -
if the MAPC instruction is not in a .IP state then the slave will run
until the master reaches the master Tlock position.

-Master Axis is stopped position 6mm
starts after 6mm moving forward.

The instruction or cam profile will not Tock until

the master axis reaches a position of 5mm as stated by the

master lock position.

-Master Lock Position 5mm

-Cam started at 5.5mm (Start running the slave servo)

Then the cam profile or in other words the slave servo would not until
the master axis was below the master lock position.

|Axis position .0032 and slightly moving not at perfect zero .00000

« »

image189.png
=3 Motion Groups
-8 MotionGroup
£ Axis0l
3B Virtual_Axis
(53 Ungrouped Axes

=-E31/0 Configuration
£ 81756 Backplane, 1756-A7
0 [0] 1756-L73 Servo_Blending_Example
- § [1]1756-M16SE Sercos
- SERCOS Network
£, 10 2094-BC01-MO1 Servo_Contr:
- § [211756-ENBT/A Ethenet
25 Etheret
f [311756-1816 DC_Inputs
) [4]1756-OVI6E/A DC_FusedOuptputs
[5]1756-IF8 Analog_Input
16]1756-0B161 DC_Input_Card2

image190.png
Servo_Blending_Example [1756-L73 30.11]*

image191.png

image192.png
Controller Tags
3 Controller Fault Handler

3 Power-Up Handler A | Show: Al Tags .
£ Tasks We are coding in the VirtualAxis

= module.

Data ~

MainTask 47ms
£§ MainProgram |
Parameters arf Local Tags '
MainRoutine | 4
B Virtualdxis | 4
TETUnScheduled —
-3 Motion Groups
5@ MotionGroup
AxisO1

T
i
1 TR Vitual_Avis.
1

These are motion group AXS
virtual axis tags. 800

[¥] Show MainProgram tags

Virtual_Axis
EEE ATy

Show parameters from other program:

image193.png
Virtual_Axis ServoActionStatus

AF| - — —

Wove

MOV-

Source Virtual_Axis ActualPosition

Dest

77.0 ¢
Virtual_Axis ActualPosition
77.04

THOV-
Wove
Source
24193548 ¢
Dest Vitual Axis AverageVelocty
24193548 ¢]

{nop

image194.png
Virtual_Axis.ServoActionStatus VirtualAxis_Jog

—— [—— JF

MAJ-
Hotion Axis Jog HcEn—|
Axis Virtual_Axis ()
Wotion Control VirtualAxis MAJ H(DN)—
Direction 0

HCERY—
Speed

HP>—
Speed Units Units per sec
Accel Rate 2500

Accel Units Units per sec2
Decel Rate 2500

Decel Units Units per sec2

Profile Trapezoidal
Accel Jerk 100
Decel Jerk 100
Jerk Units Units per sec3
Herge Disabled
Merge Speed Programmed
Lock Postion 0

Lock Direction 0

»

image15.png
et A Rl d e TR e e bl e b d

Moty CIMY ACTAIA® 180 CLAMIDE A8 s £A Dosle Alem Bomdles, oy

image195.png
Virtualdxis_log MAS

/| Motion Axis Stop HCEN>—]

Axis Virtual_Axis ()

Motion Control VirtualAxis_MAS ({DN>—
Stop Type Al

Change Decel No |HERY—
Decel Rate 100

P—

Decel Units Units per sec2

Change Decel Jerk No (PCO—
Decel Jerk 100

Jerk Units Units per sec3

image196.png
{...}

wlow|ala|u|e|wn]r]o

image197.png
-8 MainTask 47ms
-E8 MainProgram
Parameters and Local Tags
MainRoutine
Axis01_MAPC_Controls
VirtualAxis

image198.png
S:FS MOV-
0 JE Move
Source 0
Dest CurrentState
o¢
Qu- Servo_Axis01_SystemStart Axis01 ServoActionStatus MSF-
1 Equal JE S— [— lotion Servo Off HCEN>—
Source A CurrentState Axis Axis01 () HON>—
[T Wotion Control AxisO1_MSF | (ER—
Source B ServoState{0]
%9 Axis01 ServoActionStatus. oV-
JIE Move
Source ServoState{1]
14
Dest CurrentState
0¢
Q- NEQ AFR:
2 Equal Not Equal Hotion Axis Fault Reset HENY—
Source A CurrentState Source A Axis01 AxisFault Axis Axis01 () HDNY—
0 1640000_0000 ¢ Motion Control AxisO1_MAFR [(ER}—
Source B ServoState[1] Source B 0
14
Axis01.ShutdownStatus MASR
JE Motion Axis Shutdown Reset HCENY>—
Axis Axis01 () H(DNY—
Motion Control AxisO1_MASR [H(ER>—
Axis01.ShutdownStatus £QU- MOV-
—— — Equal Move
Source A Axis01 AxisFault Source ServoState[2]
16#0000_0000 ¢ 2¢
Source B 0 Dest CurrentState
0
Qu- Axis01.ServoActionStatus SO
3 Equal JE Motion Servo On FCENY—
Source A CurrentState Axis Axis0t () (KDN>—
04 lotion Control Axis01_MSO [{ER)—
Source B ServoState[2]
29 Axis01 ServoActionStatus ov-
[— | Move —
Source ServoState(3]
3¢
Dest CurrentState
0¢

(End) |

image199.png
() Parameters and Local Tags
B2 MainRoutine
Ais01 MAPC_Controls.
1 B VirtualAxis
(23 Unscheduled
R g e ==
8 MotionGroup §
= =l ==
A Virtual_Axis
23 Ungrouped Aves
{63 Add-On Instructions
=3 Data Types.
[User-Defined
[Strings
L[Add-On-Defined
= (i Predefined
@ 3 Module-Defined

=

I

Equal
i | sourspanememsiz .] Show: At Tags -
e - 24
™ | source s servostatein) [ame z2(owta -
' o¢ ~ 4y S lelenGroup bt 500
! (T otionGroup.SroupSynced 800
! § T TmTmAGH 500
i ﬂ MotionGroup. Gru:
! u MotionGroup.Grouf ~
1 Show controller tags
- Servo_Axis01_Systemstart (7] Show MainProgram tags
— Equal ——3F——
Source A CurrentState ‘Show parameters from other program:
2
S p—
0q

image200.png
£0U-

Servo_AxisD1_SystemStart MotionGroup.GroupSynced.

Equal

Source A CurrentState

Source B ServoState(0]

24

0

£QU-
Equal

Source A CurrentState

Source 8 ServoState[0]

Servo_Axis01_SystemStart

JE
24

o

|cenr——
Feeri—

o WEFFLAGS
s 800
Axis01, BOO
S o wst BOO
a1 uSEp 800 . [——
Show controller tags '
‘Show MainProgram tags
‘Show parameters from other program:

 E—

image201.png
SFS CLR:

IE Ciear
Dest. Curentstate

0T ShutdownSiats 24

— —

HEQ:

Not Equal

Source A Axis01 AxisFault
16#0000_0000 ¢

Source B [

image202.png
£aU- Q- Fa.

Equal ot Equal Moton Axis Faut Reset e
Source A CurrentState Source A AxisO1 AxisFaut Ais Axis01 () 0N0—
24 1640000_0000 ¢ Hoton Control AXsO1_MAFR [ER)—
Source B Servostatelt] Source 8 o
1o
Axis01 ShutdownStatus MASR.
Ik Wotion Axis Shutdown Reset __|-CEN>—]
fxis Axis0t () HCON—
Motion Control AxisO_WASR [-CERI—
Axs01 ShutdownStatus u- Hov-
L — — £cual Hove
Source A AxisO1 AxisFaut Source Servostatef2]
1640000_0000 ¢ 24
Source o Dest CurrentState
24

image203.png
£QU-
Equal

Source A CurrentState

24

Source B ServoState[1]

14

Ao WAFR:
ot Equsi Woton Axis Fauk Reset |cen
Source A AxisD1 AxisFaut fxis Axis01 () [ON—
"16#0000_0000 ¢ loton Control AxsO1_MAFR | -CERI—
Source 8 o
Axis01 ShutdownStatus au MASR:
E) Eausl otion Axis Shutdown Reset | <eN>— |
Source A AxisD1 AxisFaut A Axis01 () [ON—
"16#0000_0000 ¢ iotion Cortrol AxsO1_MASR [KeRI—
Source 8 o
Axis01 ShutdownStatus au wov-
e L ove,
Source A AxisD1.AxisFaut Source ServoStatel2
"16#0000_0000 ¢ 24
Source 8 o Dest Curentstate

24

image204.png
£QU-

Axis01

Equal

Source A CurrentState

24

Source B ServoState[2]

24

—

onPB _Melhnamup roupSynced

Axis01 ServoActonStatus. s0
——) — lictn Servo On |en
s Axis01 () [<oNO—
Mot Control Axis01_WSO [(ERI—
/xS0 ServoActionStatus ov-
IE ove,
Source ServoState[3]

34
Dest Currentstate
24

image16.png
Type: 2094BCOT-MOT Kinetix 500D, 46OVAC, 1AM, BKW PS, 34 Cont., 134 Peak
Vendor: AllenBradiey

Name: Kintetix6000

Description:

Revision: |1

Open Module Properties

image205.png
[[otionGroup GroupSynced

au- Servo_Axis01_SystenStart
Equal 3JE
Source A CurrentState
24
Source B Servostate(0]
o4
Axis01_0neB QU
o Ecual
Source A CurrentState
24

Source B ServoStatel3]

34

Axis01 ServoActonStatus.

[——

AXsO1_WSFDN AxisO1.ServoActionStatus.

—— f—

Hov-

Wove

Source ServoStatel1]
1d

Dest Currentstate
24

image206.png
Axis01 ServoActionStatus

[————isF.

Servo_AxisD1 Systemstart MotionGroup GroupSynced
It — —] [—— | 10t Servo Off e1—
s A0t (2 00w
s
Source B ServoState[0]
Ly Axis01_MSFDN Axis01.ServoActionStatus. -MOV-
ym=mmmmoTo—mmea — JE Uove
Axis01_0nPB | Axis01 ServoActionStatus | QU- Source ServoState[1]
| Equol 1
S — Y TN Dest Cumentstate
\ a4 24
kY Naquree B ServoState(3]
\ 3¢
\ N
\
£QU- “ ~, Axis01.ShutdownStatus. HNEQ- MAFR-
Equsl) s | 1t Ecus Woton Axis Faut Reset enr—
Source A Curenpte Soutce A A At i st @ [on>—
3¢ 16#0000_0000 ¢ Motion Control AxisO1_MAFR ER)—
Source B ServoStately] -~ Source B o
q ~Q
S ~
\ A0t ShutdownSiatus uASR
1 3E Woton Axs Shutdown Reset | CEN—|
\ Ais a0t @ [Kon>—
\ lioton Control AxO1_MASR [ER)—
\
\ S iddocbiake o o
) Equal Move
) Source A AxisD1 AxiFaut Source ServoStatel2]
\ 16#0000_0000 & 24
1 Source 8 3 Dest CurentState
! 34
\
- MotionGroup GroupSynced Axis01 ServoActinStatus 4SO,
Equal — ~. JE Wotion Serva On e1—
Source A CurrentState . Aois Axis01 (2 o
34 S ER—
Source & Servostatel2 O I
24 Axis01.ServoActionStatus \ -MOV-
ove
Source ServoState[3]

34
Dest Curentstate

image207.png
End) |

SFS

LR
3£ Clear
Dest Curentstate
Axis01 ShutdownStatus. 3¢
JE
sEQ
ot Equal
Source A Axis01 AxisFaut
1650000_0000 ¢
Source o
au- Servo_Axs01_Systenstart WotionGroup GroupSynced AxisO1 ServoActionStatus. -
Equel 3IE _— IE otion Servo Off cen—
Source A CurrentState s Axis01 () oo
3¢ oton Control AxsO1_MSF [CERY—
Source B ServoState[0]
o9 Axis01_MSFDN Axis01 ServoActionStatus -MOV-
—— f— ti0ve
AxisD1_OnPB AxisO1.ServoActonStatus au Source ServoState{t]
Lo | caual id
Source A CurrentState Dest CurentState
3¢ ad
Source B ServoStatef3]
3¢
£QU Axis01 ShutdownStatus. sEQ AR
Equal s | i Equal Woton Axis Faut Reset em—
Source A CurrntState Source A Axis01 AxisFaut s fis01 () [ON—
3¢ 16#0000_0000 ¢ Moton Control AxsO1_MAFR [ERY—
Source® ServoStateft] Source B o
id
Axis01 ShutdownStatus MASR:
JE Wotion Axis Shutdown Reset __|EN>—
s Axist1 () [CoN—
Motion Control AxisO_MASR [ERY—
Axis01 ShutdownStatus. au wov-
| s | cu! Wove
Source A Axis01.AxisFault Source ServoState[2]
16#0000_0000 « 2
Source 8 o Dest CurrentState
3d
£QU WotionGroup GroupSynced Axis01 ServoActonStatus. so
Eaual — —_— s] 110tcn Servo On em—
Source A CurrentState sois Axis01 () OO
3d Jofon Control Axs01_MSO [CERI—
Source B ServoState[2]
24 Axis01.ServoActionStatus -MOV-
IE Wove
Source ServoState[3]
R
Dest CurrentState
ad

image208.png
Stat_MAPC_ControlsPB|

[<contraler>

image209.png
Data Types:
MOTION_INSTRUCTION[3)

MANUAL_VALVE_CONTROL
IMAXIMUM_CAPTURE
MESSAGE
MINIMUM_CAPTURE

MMC

MODULE

MOTION_GROUP

MAvie M EDARE
Array Dimensions
Dim2

image210.png
WAPC-

Hotion Axis Position Cam
Slave Axis Axis01 ()
Master Axis _ __\irtual Axis (e -=CON
Motion Control ({AFCHotion_Controf0]_)
e et D
. + Show: gl Tags -
1
Name ,I Data
[AxisO1_WSF wor
01_WSO ! Mot/ _

——————at

n_Control] woT|_|

“MName: MAPCMIcT
Data Type: MOTIO!
Descriptior

Show|
[¥] Show MainProgram tags

Show parameters from ther program:

<none> -

image211.png
MAPCMotion_Cortrol

<controller>

19 Servo_Blending_Example
Read/Wite

=) [Connection...]

WOTON_NSTRICTONE (]

image212.png
M
fDremon‘

UINT32

UINT32

Immediate
or Tag

Relative direction of the slave axis to
the master axis:
o (Same+ the siave axis position
values are in the same sense
as the master’s.

n values are in the
opposite sense of the
master’s.

Or relative to the current or
previous camming direction:

. (_ _TSEI— the current or
previous direction of the
position cam is reversed on
execution. When executed for
the first time with Reverse
selected, the control defaults
the direction to Opposite.

Unchanged\- this alows other

« fachanped)
cam parameters to be
changed without altering the
current or previous camming
direction. When executed for
the first time with Unchanged
selected, the control defaults

the direction to Same.

image213.png
MAPC-

HMotion Axis Position Cam
Slave Axis Axis01 ()
Master Axis Virtual_Axis (o)
HMotion Control MAPCMotion_Controlf0]
Direction []
CamProfie MAPC_CamProfieONE ()
Slave Scaing 1
Master Scaiing 1
Execution Mode Once
Execution Schedule Immediate
Master Lock Position [
Cam Lock Position 0
Master Reference. Command

Master Direction Forward Only

»

Fceny—
HCON>—
Hery—
HoP—
PC—

image214.png
MAPC_CamProfileONE|

<controller>

[Conn]

CAM_PROFILE[30]

9 Servo_Blending_Example
Read/Vite

image17.png
Name:

Description:

Usage: [<nomal>

Type: Base = | | Connection.
Alias For:

DataType: AXIS_SERVO_DRIVE

Scope: 2 ServoMastery_Basics -
Extemal -

o
Style: =

("] Constant
"] Open &XIS_SERVO_DRIVE Configuration

image215.png
| Slave Position

[] [Master |Slave |Type
0.0 Cubic
10 Cubic
150 |Cubic
34.666... | Cubic
59.666... | Cubic
80.333... | Cubic
81.0 Cubic
47.666... | Cubic
80.0 Cubic
95.333... | Cubic

image216.png

image217.png
Qu-
Equal

Start_MAPC_ControlsPB.

Source A CurrentState
0¢

Source B ServoState[3]
3¢

TE
FE

MAPC-
Wotion Axis Position Cam Cen
Slave Axis Axis01 ()
Master Axis Virtual_Axis () HON—
Wotion Control MAPCHotion_Control0]
Direction 0 HER—
CamProfie MAPC_CamProfieONE () (H(PY—
Slave Scaling 1
HPC>—
HOV-

Move

Source ServoState(4]

Dest CurrentState

44

0¢

image218.png
£QU
Equal
Source A CurrentState
0
Source B ServoState[0]
0¢
Axis01_OnPB £QU
— [— Equal

MotionGroup.GroupSynced

— —

Source A CurrentState

image219.png
MAPC_Controls*

image220.png
£QU

Equal

Source A CurrentState

Source B ServoState[3]

Start_MAPC_ControlsP8

R

3¢

3¢

1E
1€

Greater Than (A>B)

Source A

Source B

image221.png
60 kY 100 120

Master_|Slve [Type | -

Cubic

100 |10

Cubic

Cubic

29.333... |34.666.

Cubic

38.666... [59.666...

Cubic

[0 |
1 I
2200|150
3
4
5

50.666... |63.333.

Cubic

7 |740 [47.666... |Cubic
8 [87.0 [68.333... |Cubic
9 |s20 80.0 Cubic L
10 |110.66... [95.333... [Linear

| A2is07_MAPC_Controls™

2 o ’
T R ——
~ [Start Siope_J0.0
« I i » [EndSwpe 00
Master: Postion: Velocity: Acceleration: Jerk: m _
) 10 ko oo oo

image222.png
General | Motion Planner

Homing | Hookup

[Hard Travel Limits
Soft Travel Limts

Maximum Positive:

Maximum Negative:

Position Uniits

Position Uriits

image223.png
Name | General | Display | Pens | X4 |Y-Ads | Tempiate | Samping | Stat Trgger | Stop Trgger

Chart time range:
Start date
/200018 - StatDate and Start Time
are not avalable when
Start time solingisshowed. To
SmamapM 2 cleatAlow Scioling, use
35353PM gjfconaln=
Time span
45
Display options
(V] Display scale
Display date on scale
V] Display grid ines
4 2 Maior gidines
& Mot o
0 2] Minor gidnes
W Gid color

[ox J[camel][aey Help

image224.png
M

Name | General ens is | Y-Ads | Tempiate | Samping | Start Trigger | Stop Trigger
Pen Attibutes
T: Color_| Visble [Width | Type Style Marker {
1_[Ais01 ActualPos 1 [Analog | ———— |None 0.00{
Axs01 CommandPostion 1 Arslog |———— [None __[000
3| Vintual_Aws ActualPostion 1 Andlog |———— [None 0.
<) s
Add/Configue Tags [Delete Pen(s) \
Multiple Pen Edits
Visble | Widh | Ty Style | Marker Eng. Unis
Clear Selections [Appiyto Selected Penls) |
T = 2

image18.png
Name: Servo_Mastery

Description:

Usage: [<nomal>
Type: Base ¥ | Connection

Alias For: > ‘

DataType: MOTION_GROUP E]

Scope: 2 ServoMastery_Basics -

G
Style: -
("] Constant

Open MOTION_GROUP Configuration

image225.png

image226.png
Name | General | Display | Pens | X-Axis | Y-Axs

Minimum / maximum value options
) Automatic (best fit based on actual data)
) Preset (use min/max setting from Pens tab)

©® Custom
Minimum value

© Actual minimum value

Maimum value

© Actual maximum value

Display options
[¥] Isolated graphing isolation

Display scale % Decimal places
[7] Display gid nes

W Gid color

Scale options

Allpens on same scale
® Each pen on independent scale
Scale using pen

image227.png
[Unscheduled
&5 Motion Groups
568 MotionGrou

| Virtual_Ais
(53 Ungrouped Axes
(33 Add-On Instructions
3 Data Types
£j, User-Defined i Drive Courts/1.0 Position Units
3 Strings ; Based on 200000 Counts/Mot...
.4 Add-On-Defined
3 Predefined
£ Module-Defined

Drive Counts/Unwind

.5 Trends
f [311756-1816 DC_Inputs =

Ll ———

- 3 - MainRoutine | Virtualaxis* JAxis01_MAPC_Controls]
e Conole Orgonzely Logea Crgize] ||« » | s | J oo [

image228.png
-E8 MainProgram
Parameters and Local Tags
MainRoutine

'D.AvdJI.MAEC Controls

tbv.nual Axis
(53 Ungrouped Axes
dd-On Instructions

55 Data Types
£} User-Defined
3 Strings

£} Add-On-Defined
-G Predefined

m

Virtual_Axis ServoActionStatus VirtualAxis_log

——

This rung controls the virtual axis

command.

Motion Axis Jog
Axis

Direction

Speed Units

WAT

Motion Control VirtualAxis_MAJ

Virtual_Axis ()

0

Units per sec

image229.png
£QU- AT
Equal Greater Than (A>8)
Source A CurrentState Source A Virtual_Axis AverageVelocty
4 8064516 ¢
Source B ServoState[4] Source B 1
46

WAPC-

Motion Axis Position Cam

Master Axis
Motion Control
Direction

Cam Profile
Slave Scaing

image230.png
MAPC_CamProfile TWO

image231.png

image232.png
MAPCHMotion_Controf1] PC
%

Move

MOV-

Source ServoState[3]

Dest

3¢
CurrentState.
4

image233.png
SecondCam_Active Axis01.PositionCamPendingStatus

—— — —— —

MAPC
Wotion Axis Position Cam HEN—
Slave Axis Axiso1 ()
Master Axis Virtual_Axis () <(DN—
Wotion Control MAPCHotion_Control[1]
Direction 0 KER—
CamProfie MAPC_CamProfieTW0 () (H(PY—
Slave Scaling 1

HPC>—

«

SecondCam_Active

MAPCHotion_Controf{1].PC

L

MOV-

TE
JE

Move

Source ServoState[3]

Dest CurrentState

L

44

image234.png
Equal

£QU-

Start_MAPC_ControisPB

Source A CurrentState

4¢

Source B ServoState[3]

3¢

TE
1€

RT- APC-
Greater Than (A=B) Motion Axis Position Cam HCEN.
Source A Slave Axis Axis0l ()
Master Axis Virtual_Axis (...) (DN s
Source B Wotion Control MAPCHotion_Controf0]
Direction 0 KER—
CamProfie MAPC_CamProfieONE () [HP>—
Slave Scaling 1
CPCOm
e
———Mov- (¢~ SecondCam_Active™y
Hove
Source ServoState(4]

4
Dest CurrentState
4

image19.png
Controller Organizer

-3 Controller ServoMastery_Basics
Controller Tags
(3 Controller Fault Handler
(3 Power-Up Handler
=-E3 Tasks
=68 MainTask
£33 MainProgram
(3 Unscheduled Programs / Phases

Ungrouped Axes
Add-On Instructions
-3 Data Types
£, User-Defined
- Cg, Strings
[, Add-On-Defined
- O, Predefined
£, Module-Defined
3 Trends
-3 VO Configuration
-8 1756 Backplane, 1756-A10
9 [1]1756-L73 ServoMastery_Basics
= B [2]11756-M16SE Sercos
SERGOS Network.

=} e ———

E. 10 2094-BCO1-MO1 mmmmml

=-8 [s] 1756-ENBT/A Ethernet
&5 Ethernet

] (

J

image235.png
Master
fisa sz

flr———

Start Sope

00

[End Sope

00

Poston:

o

v:l:TW%_

image236.png

image237.png

image238.png
MAPC-

Motion Axis Position Cam HCEND—
Slave Axis Axis01 ()
Master Axis Virtual_Axis (...) DN
Motion Control MAPCMotion_Control[0]
Direction 0 HCER)—
‘Cam Profile MAPC_CamProfileONE () H(P>—
Slave Scaling 1
JCPC -
Master Scaling 1
___________________ N
lExecnwn Mode Once |
\execution Schedule ___ _ immedinte /
Master Lock Position 125
Cam Lock Position 125
Master Reference Command

Master Direction Forward Only

image239.png
JAPC-

Motion Axis Position Cam

Slave Axis Axis0l ()
Master Axis Virtual_Axis ()
Motion Control MAPCHotion_Control1]
Direction 0
CamProfie MAPC_CamProfieTWo ()
Slave Scaling 1
Master Scaling 1
(B

\Execution Schedule Pending !
Waster Lock Posiion 785

Cam Lock Posttion 185
Waster Reference Command

Master Direction Forward Only

Hcen>-
Jecone
R
e
HcPe>-

image240.png
£QU- RT- MAPC_BlendingStart MAPC- MOV- SecondCam_Active
Equal Greater Than (A>B) |—s— [l{otion Axis Position Cam HCENY>—— Move ——U
Source A CurrentState Source A Virtual_Axis AverageVelocty Slave Axis Axis01 () Source ServoState[s]
s¢f 4.032258 ¢ Master Axis Virtual_Axis (...) (DN e S
Source B ServoState[4] Source B 1 Wotion Control MAPCHotion_Control0] Dest CurrentState
4¢ Direction 0 KER— s¢
CamProfie MAPC_CamProfileONE (o) H(P)—
Slave Scaling 1
[CPCOm=
Waster Scaling 1
Execution Mode Once
Execution Schedule Immediate
Waster Lock Position 125
Cam Lock Position 125
Master Reference Command
Waster Direction Forward Only
Qu- AT SecondCam_Active Axis01 PostionCamPendingStatus APC:
Equal Greater Than (A>B) JE -— — Motion Axis Position Cam [HCEN:
Source A CurrentState Source A Virtual_Axis. AverageVelocity Slave Axis Axis0 ()
s¢ 4032258 ¢ Waster Axis Virtual_Axis (=) (DN e
Source B ServoState{s] Source B 1 Motion Control MAPCHotion_Control1]
s¢ Direction 0 HerR
CamProfie MAPC_CamProfieTW0 () mCIP)ms
Slave Scaling 1
RGP
Master Scaling 1
Execution Mode Once
Execution Schedule Pending
Waster Lock Position 185
Cam Lock Position 185
Master Reference Command
Master Direction Forward Only

SecondCam_Active
— | —

MAPCHotion_Controf[1].PC ——MoV———

image241.png
Qu: BuidCam{0]
Equal J E
Source A MotionStateControl[0]
4¢ BuidCam{1]
Source B MotionStateControl4] JE
44

Change_Camming

-MCCI
Motion Calculate Cam Profi
Ldginn Control _Axis01AdvControl MCCP@L
(Cam
=Ag

Start Slope
End Siope

Cam Profile

<Local31Data 13>
JE Move Move Move 1
1| source 036 Source 0.40 Source 1
1
| | Dest Axiso1AdvControLPendingCam{1] Master Dest AxisO1AdvControl PendingCami1] Siave Dest Axis01AdvControl PendingCami1] SegmentType
! 043¢ 05¢ 14
i
Change_Camming |
<Local31Data 13> | MOV- HMOV- MOV-
JE L Move Move Move
1 | source 064 Source 06 Source 1
1
| | Dest Axis01AdvControlPendingCami2] Master Dest AxisO1AdvControl PendingCami2] Siave Dest Axis01AdvControl PendingCami2] SegmentType
' 052 ¢ 053¢ 14
1
1
Change_Camming |
<Local3Data.13> | MOV- HOV- HOV-
JE H Move Wove Move t
1| source 084 Source 0.40 Source 11
1
|| Dest Axis01AdvControl PendingCam(3] Master Dest Axis01AdvControl PendingCami3] Slave Dest Axis01AdvControl PendingCam{3] SegmentType
! 062¢ 054 14
L e e e e e
Change_Camming
<Local:21Data. 13> CamiChange BuidCam(0]
JE {ons} L
Change_Camming
<Local:3LData. 13> BuidCam(0]

Axis01AdvControl MCCP{OJEN BuidCam{0]

image242.png
8 Servo_Controls
18 Virtualasis_Control
Unscheduled Programs / Phases
&3 Motion Groups
568 MotionGroup.
£ misol
2 VirtualMaster
(3 Ungrouped Aves
5 Add-On Instructions
= Slhsta Tvpss
(268 User-Defined
i Advanced_Motion UDT |
=T M Besic Motion U0
G Stinge
(G Add-On-Defined
5 G Predefined
-0 Module-Defined
63 Trends.

Menbers. Data Type Size: 30560
Name DaaTye Syl [Desoipion EvemalAcorss
7] WOTION NS TRUCTIONTIa] ResiWite
&l WOTION NS TAUSTIONTId] Resd/Wite
El WOTION_INSTAUCTIONTId) Resd/Wite
Bl WOTIOR NS TRUCTIONTIa] Resd/Wite
El WOTION NS TAUCTIONTid] Resd/Wite
T WOTION_INSTRUCTIONTT0] Resd/Wite
El WOTION_INSTRUCTIONTId] Resd/Wite
3] WOTION_INSTAUCTIONGId] Resd/Wite
Bl WOTION NS TAUCTIONTIa] Resd/Wite
& MOTION_INSTRUCTION[IO] Resdvite
i) i L] FesdWite
HE] Resd/Wite
T CANISED] Resd/Wite
] oat oo | P

image243.png
— Axis01AdvControl PendingCam(1]

o [CaM

‘i1 AdvCortrol PendingCam{1] Master 0.48 Float REAL

+ AsisO1AdvControl PendingCam[1].SegmentT ype 1 Decimal DINT
| Axist1AdvContiol PendingCam(1] Slave 0.5 Float REAL

image244.png
BuildCam{0]

Axis01AdvControl MAPCIOLP

— (—

T
JE
BuidCam{1]
—

RunMAPC
<Locat:3:1Data.7>

T b —

MCCF
Motion Calculate Cam Profile
Motion Control Axis01AdvControl MCCP[0]

Cam AxisO1AdvControl PendingCam(0] ()
Length 6
Start Siope: 0
—— build cam a

Cam Profile Axis01AdvControl RunCam{0] ()

CEn—
[N
CER—

Axis01AdvControl MCCP[0] E}

AR
on Axis Position Canl HCEN>—-
e Axis Axis01 ()
Waster Axis Virtualiaster (... jsCDN s
Motion Control Ax;sm*vcomml MAPC[0]
Direction 1 1 e
comprorc I ETTIENGEE]) P>

Slave Scaling 1
use cam

o]

image20.png
T Axis Properties - Axis01

Amplfier Catalog Number: (2094-8C01-M01

Motor Catalog Number: <none>
Loop Corfiguration: [Postion Sevo
Drive Resolution: zmm

DDnveEnable Input Checking |

[] Drive Enable Input Faut

Ensure it is unchecked.

DiveCorts/ o)

Real Time Axs Infomation Catalog Number:
MPLB1520U/x:2
Atrbute 1: — -
) MPLB1510V-Vaed
e 2 [<none> - MPL81520U-Ex2
MPL815200-Excd
MPLB15200-Hixe2

Mi

520U-Haxd

MPL-B1520U-Vxxd
MPL-B1530U-Exx2
MPL-B1530U-Exxd
MPL-B1530U-Hxx2

=]

Filters
E Voltage Family Feedback Type
[<al> v] [<a|l> v] [(al) =

image245.png
Change_Camming
<Local:3:.Data.13>

MOV-

MOV-

-MOV-

1E
JE

Move

Source 0.36

Dest AxisO1AdvControl PendingCam{1] Master

Move

Source 0.40

Dest Axis01AdvControl PendingCam{1].Slave

Move

Source 1

Dest Axis01AdvControl PendingCam(1]. SegmentType

Dest Axis01AdvControlPendingCam(3] Master
262¢

043¢ 05¢ 14
HOV- MOV- HOV-

Hove Move Hove

Source 264 Source 20 Source 1

Dest Axis01AdvControlPendingCam(2] Master Dest PendingCam(2] Slave Dest Axis01AdvControl PendingCam(2] SegmentType

1524 153 ¢ 14

HOV- MOV- HOV-

Hove Move Hove

Source 384 Source 30 Source 1

Dest Axis01AdvControl PendingCami3] Siave
25¢

Dest Axis01AdvControl PendingCam(3] SegmentType
14

MOV-

MOV-

MOV-

Move

Source 420

Dest Axis01AdvControl PendingCami4].Master
3.85 ¢

Move

Source 20

Dest Axis01AdvControl PendingCami4] Siave
115 ¢

Move

Source 1

Dest Axis01AdvControl PendingCami4] SegmentType
1¢

-MOV-

MOV-

MOV-

Move

Source 55

Dest Axis01AdvControl PendingCamiS].Master

WMove

Source 0.4

Dest Axis01AdvControl PendingCam(s]. Siave

Move

Source L

Dest Axis01AdvControl PendingCam(S]. SegmentType

425¢ 004 14
Change_Camming
<Local:¥Data13> Axis01AdvControl MAPCIO]P QU CamiChange BuidCam{0]
] F——— [—— Equal {ons} L
Source A MotionStateControf0]
4¢f
Source B MotionStateControf4]
44
Change_Camming
<Local3Data 13> BuidCam(0] ~Axis01AdvControlMCCPIOLEN BuiidCam{0]
IE IE IE m

u f =

image246.png
FHCEN>—
DN
Her—

Buigcamio] § el
JE Motion Calculate Cam Profile
Hotion Control Axis01AdvControl MCCP{0]
BuidCam{1] Cam AxisO1AdvControlPendingCam(0] ()
— Length 6
This .IP is saying you cannot execute \\ Start Slope. 0
the MCCP while the MAPC is running.
Yd siope 0
\
Can¥rofiie Axis01AdvControl RunCam{0] ()
~
RunMAPC \\
<Local:3:LData.7> Axis01AdvControl MCCPOLEN L} MAPC-
T — is Ygsiton Cam

\ Axis01 ()

s M _ . Vituelilaster ()
c «lemx'smAavcmml.MAPc[u] A

m————————=T

CamProfie AxisO1AdvControlRunCami0] ()
Slave Scaing 1

«

image247.png
BuidCam(0] Axis01AdvControl MAPCIO] P HCCH
JE —| [—— Motion Calculate Cam Profile HCENY>—
Hotion Control Axis01AdvControl MCCP{0]
BuidCam{1] Cam AxisO1AdvControl PendingCam(0] () feCDNJem
1E Length 6
HER—
Start Siope 0
End Siope 0
Cam Profie Axis01AdvControl RunCam{0] ()
RunMAPC
<Local:3:LData.7> Axis01AdvControlMCCPIOLEN WAPC
T [— Motion Axis Position Cam CEN;
Slave Axis Axis01 ()
Master Axis VirtualMaster () (DN
Motion Control Axis01AdvControl MAPC[0]
Direction 1 HERH]
CamProfie AxisO1AdvControlRunCami0] (o) H(P>—
Slave Scaing 1
Hcre—|
Master Scaing 1
Execution oce [T
Execution Schedule Immediate
Master Lock Position 0
Cam Lock Position 0
Master Reference 0
Master Direction Forward Only
StopMAPC
<Locat:3:LData. 11> MAS
JE Motion Axis Stop Hceny—
Axis Axis01 () DN e
Wotion Control AxisO1ControlMAS[2]) [{(ER)—
Stop Type Poston Cam [(P)—
JeCPCe

image248.png
Output Cam Editor - Output_Cam Clock BT
g oo
4 Qaa woce: EEEHE
bit 60! 120} 11] outpu..[Latch .. [uniatc..[Left P... Right ... [Durati...| Enab... [Enabl... | +
o ; : oo Postion_|Position | 0.250._| 0.499.._| 0.000.._[input [0
1] i i 1]o Position |Position [0.750... | 0.999... [0.000... [input |0
2] ; 1 : 21 Position... Position...| 0.500... | 0.999... | 0.000... [nput |1
31 H H 32 Enable |Enable | 0.000.. | 0.000. | 0.000.. [nput |2
4] i i 43 Position |Duration | 0.000... | 0.000... [5.000... [input |2
5 : : 5|4 Enable |Duratio...| 0.000... | 0.000... | 5.000... [nput |2
3 : ¢ 61 Position_|Position | 0.650... | 0.750... | 0.000... [input |0
7 ; i : 5
= : H HE
19 i i i
— H H H - S
< » « i] »
I Comen) [4y | bl

image249.png
[1 | Output Bit Latch Type Unlatch Type Left Position Right Position | Duration Enable Type Enable Bit
oo Position Position 0.250000 0.499999 0.000000 |Input 0
1]o Posttion Posttion 0.750000 0.999999 0.000000 [Input 0
21 Posttion and Enable | Posttion and Enable 0.500000 0.999999 0.000000 [Input 1
3]2 Enable Enable 0.000000 0.000000 0.000000 |Input 2
4|3 Posttion Duration 0.000000 0.000000 5.000000 [Input 2
5|4 Enable Duration and Enable 0.000000 0.000000 5.000000 [Input 2
61 Position Position 0.650000 0.750000 0.000000 |Input [

image250.png
MAOC-

Wotion Arm Output Cam
Axis MasterAxis ()
Execution Target 0
lotion Control Output_Cam Enable_Control
Output Output_Cam Output
6e
Input Output_Cam Input
de

Output Cam Output_Cam_Clock{0] (=)
CamStartPostion Output_Cam CAM_Start

00e
CamEnd Posiion Output_Cam.CSM_End

10¢
Output Compensation MAOC_Compensation{0]
Execution Mode Continuous.
Execution Schedule Forward Only
Axis ArmPosiion Output_Cam Axis_Arm

00e
CamArmPosiion Output_Cam.CAM_Am

00e

Position Reference Command

»

e
Jconst
Ry
e
Hpey—

image251.png

image252.png
Postion
" Duration
" Enable
~ Postion and Enable
Duration and Enable

image253.png
f=——D0utput_Cam.Output.0

f=——Dutput_Cam Output 1

BN E N EN

il

| MasteiAsis ActualPosition

image254.png
' Output Cam Editor - Output_Cam_Clock

J

SR

bit| o} 02} 04} 08} 08} 1 [1 [Outpu...| Latch ...| Unlatc...| Left P...| Right ...

0] iy H : 77 7! 0|0 Postion |Position | 0.250.._| 0.499_._| 0.000.._[input | 0
Tl ! J 5 = 1 0

2] ! : : i : i 2|1 Position... Position...| 0.500... | 0.999... | 0.000... [input |1
31 : : : : : 3|2 Enable |Enable | 0.000.. | 0.000.. | 0.000.. [nput |2
4] : : : : : 4|3 Position [Duration | 0.000... | 0.000... | 5.000... [Input 2
5|1 : : : 1 : 5|a Enable | Duratio..| 0.000... | 0.000...| 5.000.. |nput |2
6] : : ; ; : ; 61 Postion_|Position | 0.650... | 0.750... | 0.000... [input |0

image21.png
Fiie | Redundancy | Nonvolatie Memory |
Generl | MajorFauts | MinorFauts | Date/Tme® |

(@ The Date and Time displayed here is Controler local time not workstation local i
Use these fields to configure Time attributes of the Controller.

Set Date, Time and Zone from Workstation | €

Date and Time: | | [Change Date an

[] Adiust for Daylight Saving (+00:00) «

Time Synchronize

| @1 Enable Tume Synchvorizztion

4 DANGER. ¥ time synchronizati
disabled online, active axes in ;
‘controller in this chassis. or any

image255.png
ServoActionStatus Output_Cam Enable_Conirol P ————————uooc-
|/ E—— = Hotion Disarm Oufput Cam) . FCEND—
RS (Masteraxis} ()
Execution Target A ¢
Motion Control Output_Cam Disable_Control {(ER)—
DisarmType == ==="= Al
N HOV- MOV-
Hove Move
Source 0 Source 0
Dest Output_Cam Output Dest Output_Cam_Abs.Output
- o€ o€

image256.png
e_ControlIP

RefAbsolute

Executon Target |

Motion Control Olitput_Cam_Abs Enable_Control [(ER)—

=HA0CTT
Wotion Arm Output Cam
Axis MasterAxis ()
Execution Target [
o Mtio Coai 0k m = Quitplile £ EnbIS, £0atEDlm o,
Output i
(X3}
[Tpur "." “Outpui_Caminput
se
Output Cam ,' Output_Cam_Clock{0] (=)
Cam Start Position | Output_Cam CAM_Start
1 00e
CamEnd Position 'l Output_Cam.CSM_End
10€
Output Compensatior MAOC_Compensation(0]
Execution Mode | Continuous.
Execution Schedule | Forward Only
Axis Arm Position | Output_Cam Axis_Arm
] 00e
Cam ArmPositon | Output_Cam CAM_Arm
00e
1
Position Referencey Command
1
Y
e
1 uaoc
Motion Arm Ouﬂwlg [HCEN>—
Masteraxis ()
1 Hony—

Output_Cam_Abs Output

0e (OP—
Output_Cam.input
46 HCPCI—

Output_Cam_Clock{0] (=)

«

e_ControlIP

,' HDOC-

Motion Digarm Output Cam FCEN>—

Axis | MasterAxis ()

Execwf\ Target 1

Wotion inntml Output_Cam.Disable_Control

DisarmyType Al

H
MOV- MOV-

Hove
Source]

Dest Output_Cam_Abs.Output
0¢

image257.png
— Output_Cam.Output
Output_Cam.Output.0

Output_Cam Output 1

Output_Cam Oulput.2

R -

image258.png
88 Tog Propertes - MAOC_Compensation

General

Tipe: Base <] [Comnecton
sasfo: Predefined Data Type
(5 Tome fouTeUT conPENSATIONT

Scope: H MainProgram

Etemal o <
Read /Wi

Stye:

O Constant

o[s | [0

WAOC:
to oSl e amousutcan Feen—
aus Masteras
Execution Target o on—
Motion Control Output_Cam.Enable_Control [ErRH
Output Ouiput_CamOutput
0e Lom—
ot Output_Camnout
e Lo
Output Cam Output_Cam_Clock[0]
CamStarPostion Ouiput_CamCAN_Stat
e
CamEndPosiion Outpu_CamCSH_End
Y i o roy)
REE e
Execuion Shadule Forward Only
As ArmPosion Ouiput_Cam Axis_Am
e
CamAmFosion Oufpu_ComCAU_Am
e
Poson Reference Commana
woe——————
Motion Arm Output Cam [HCEN—
aus Masterae
Execution Target 1 HoN—
Motion Control Qutput_Cam_Abs Enable_Control HER—
Output Ouiput_Cam Abs Ouput
0e Lom—
out Outout Caminout

image259.png
Name:

Descipton
Members: Data Type Size: 24 bytefs)

Name Data Type Syl Desciption Extemal Access
Ot REAL Floal Fead/wite
LatchDeloy | REAL Float Read/wite
UrlatchDelay | REAL Float Read/wite
Wode DINT Decimal Read/wite
CyoleTime, REAL Float Read/wite
Duyiycle REAL Float Read/wite

image260.png
= MAOC_Compensation

QUTPUT_COMP.

= MAGC_Compensalion(0]

QUTPUT_COMP.

MAOC_ Compensalion(0] Ofset Float REAL
MAQC_ Compensation(0]LatchDelay Float REAL
MAQC_ Compensatior{O]UrlatchDelay Float REAL

+ MADC_Compensation{0]Mode Decimal DINT
MAOC._ Compensation(0] CycleTime. Float REAL
MAOC_Compensation{0] DutyCycle. Float REAL

image261.png
Cam Position

H L
. Offset
——————
Position
-
, Latch Offset | ., Unlatch Offset |
i L !

Compensated Cam

image262.png
Output Bit

Compensated Output Bit

Mormal

Inverted

Pulzed

Inverted and P ulsed

Time

L
| 1
Time
o~
.On Duty Tlme 1 1
- i
i i
H Cyde Time H
L
On-Duty Time

Duty Cyde =
Cyde Time

image263.png
Compensated Cam Position Position

o o
Enable Bit Pasition i Position
' - ' -
i 1 1 i
Output Bit : ' ' :
Inactive R R Position R Position
T L - L T -
1 H H 1
. s e 1 P e LA - -
P osition ' Position | Position
T i L : -
Enahle ! P osition i Position
- o~ o
']
S R
P osition and Enahle ! P osition : Position
o~ o~

— — — — CQutput bit initially set
Cutput bit initially not set

image264.png
Compensated Cam Time Time

o~ o~
Enable Bit Time Time
' - ' -
i H i
h H h
Output Bit ! ' !
i H i
i : 1
Duration i Time _: Time
: - : o~
Durationand Enable _: Time [_: Time
o o~

— — — — OQutput bit initially set
Cutput kit initially not s=t

image22.png
Sercos System

0 = Looking for ring

1 = Looking for Active Nodes

2 = Configuration Communication
3 = Configuration Nodes

4 = Configured Axis
Note: if stuck in a state then open the quick view panel to see the axis state|

image265.png
11] outpu..] Latch Type [Unlatch Type [Left Position | Right Position | Duration _| Enable Type | Enable it
L 1) [Posiion [Positon 0250000 0458999 | 0.000000 [Input [
f—— 1 1o [Positon [Positon 0750000 0.968999 | 0.000000 [Input [
i i i 2|1 [Postion and £ _|Postion and En. 0500000 0.968999 | 0.000000 [Input 1
i i i a2 [Enable [Enable 0000000 0.000000 | 0.000000 [input z
B B B <3 [Postion [Duration 0.000000 0.000000 | 5.000000 [input 2
= [Enable [Duration and €. 0000000 0.000000 | 5.000000 [input 2
6|1 [Postion [Postion 0650000 0750000 | 0.000000 [input [

image266.png
Output_CAM_Bits_0_and_1

j——Duitput_Cam Output 0

|——=Dutput_Cam Output 1

|[EF Mastesbuis ActuaPostion

image267.png
Transfer offsets into Offset memebers in Compensation Array for MAOC

e Compensaton Ot o
£ Sotes Compensan_ it Vles
PRI —
od
Jurr——— wov.
. o
et WAOC_ Conpensaton} ffet
od

“Transfer Latch and Unlatch delays info Compensation Array for MAOC

Add_Compensation_Delays Hov-
IE wove
IE
Source Compensation_Laich Delay_Values
104
Dest MAOC_Compensation]i]LatchDelay
004
wov-
wove [
Source Compensation_Uriatch_Delay_Values
“rod
Dest MAOC_Compensaton{] UnlatchDelay
004
Add_Compensation_Delays Hov-
) e wove
Source o

Dest MAOC_Compensaton[f] LatchDelay
004

oV-
Wove. |-
Source. 0

Dest MAOC_Compensaton(1] UnlatchDelay
004

image268.png
Output_CAM_Bits_0_and_1
e Qutput_Carn. Output.0

e Quitput_Cam. Output.1

=} Masterduis. ActualPosition

image269.png

image270.png
I — Output_Cam.Input 31
| Output_Cam.Input.0 1
I
I

Output_Cam.Input.1
Output_Cam.Input.2

Output_Cam.Input.3
Output_Cam.Input.4

G

-

image271.png
‘= Output_Cam.Output

- Output_Cam.Output.0

Output_Cam.Output.1

Output_Cam.Output.2

- Output_Cam.Output.3

Output_Cam.Output. 4

image272.png
L1 (1 £ £ 5 B 12 =4

120}

180;

240

.| Position...| 0.250... | 0.499... 6
o .| Posttion...[0.750... | 0.999... o.ooo.,. hput 6
| 2|1 .| Position...| 0.500... |0.999... [0.000... [Input 6
| 3|2 Enable | 0.000... | 0.000... | 0.000... [Input 6
B Duration | 0.000... [0.000... | 5.000.. [nput [6
Bp Duratio... | 0.000... | 0.000... | 5.000... [Input 6
6|1 Position | 0.650... | 0.750... | 0.000... [Input |6

image273.png
Position and Enable

Position and Enable

Position and Enable

Position and Enable

Position and Enable

Position and Enable

Enable Enable
Position Duration
Enable Duration and Enable

Position and Enable

Position and Enable

image274.png

image23.png
g Uata 1ypS
£} User-Defined
-5 Strings
£j Add-On-Defined .
- Predefined e MSO L
G Module-Defined § mzn =
i @ MaSR Direction Formard
=3 /0 Configuration & MDD Speed 1
3 1756 Backplane, 1756-A10 @ MDF Speed Units Urits per sec
f2 [0]1756-L73 ServoMastery_Basics @ MDS mnx Jﬂ? —
- B [211756-M16SE Sercos R MAFR Bocel ds Ui per
& SERCOS Network =-E3 Motion Move Decel Units Units per sec2
£, 10 2094-BCO1-MO1. Kintetix6000 Qe MAS Profie Tiapezoidal
- B [311756-ENBT/A Ethemet R MAH Accel Jeik 100
&5 Ethernet S MA) DecelJeik o0
Qo MaM Jerk Units %.of Time.
B MAG Merae Disabled
3 m?; ‘ DANGER: Executing motion command with controller in

Program or Run Mode may cause axis motion.

g) Caon) [

image275.png
Output_Cam.Input
- Output_Cam.Input.0

Output_Cam.Input.1
Output_Cam.Input.2
- Output_Cam.Input.3
Output_Cam.Input.4
 Dutput_Cam.Input.5
- Output_Cam.Input.6

IDD—'P—'P—‘!—'P—'

image276.png

image277.png
Master Delay Compensation

Enable Master Posttion Fiter

Master Position Fiter Bandwidth Hertz

image278.png
Motion Control
Output
2#0000_

Cam End Position
Output Compensation
Execution Mode
Execution Schedule
Axis Arm Position
Cam Arm Position

Position Reference

Output Cam
Cam Start Position

MAOC:

Output_Cam.Enable_Control
Local:4:0.Data

00_0000_0000_0000 «

~Uufput_CamTipat

Output_Cam_Clock{0] C]
Output_Cam.CAM_Start
00e
Output_Cam.CSM_End
10€
MAOC_Compensation[0]
Continuous
Forward Only
Output_Cam.Axis_Arm
00«
Output_Cam.CAM_Arm
00e
Command

»

image279.png
— Output_Cam.Enable_Control

}

- Output_Cam.Enable_Control AC 0
Output_Cam.Enable_Control ACCEL 0

0

0

Output_Cam.Enable_Control. CalculatedD atadvailable
Output_Cam.Enable_Control DECEL
- Output_Cam Enable_Contiol DN
- Output_Cam.Enable_Control. EN
- Output_Cam.Enable_Control ER

+ Output_Cam.Enable_Control EXERR

+ Output_Cam.Enable_Control. Flags 301989888
- Output_Cam.Enable_Control. IP

Output_Cam.Enable_Contral. PC

'+ Output_Cam.Enable_Control SEGMENT

+ Output_Cam.Enable_Control STATE

+ Output_Cam.Enable_Control. STATUS

“ QOutput Cam.Enable Control. Trackingh aster

olo|lo|o|o|e

image280.png
The specified execution target exceeds the number of Illegal Execution Target
Output Cam targets configured for the axis.

image281.png
Paosition Unwind: Feedback Counts/Unwind

image282.png
MANM:

Motion Axis Move

Axis Masteraxis ()
Motion Control Axis[0].Axis_MAM[0].Control
Move Type 0
Position 1000
Speed hDD
Speed Units Units per sec
Accel Rate 1000
Accel Units Units per sec2
Decel Rate 1000
Decel Units Units per sec2
Profile Trapezoidal
Accel Jerk 10
Decel Jerk 10
Jerk Units Units per sec3
Merge Disabled
Merge Speed 0
Lock Position 0
Lock Direction 0
Event Distance 0
Calculated Data 0

Axis[0]. Axis_MAM[0].Control PC Axis[0] Axis_MAM[0] Enable
L — —)

Axis{0]. Axis_MAM[1].Enable
| —) —

image283.png
MasterAxis.ServoActionStatus Output_Cam.Enable_Control.IP

T E
1t

e— —

MDOC-
Motion Disarm Output Cam HCEN—
Axis Masteraxis ()
Execution Target 1 DN =
Motion Control Output_Cam.Disable_Control HCERD>—
Disarm Type All
MO MOV-
Move Move
Source Source 0

Dest Output_Cam.Output

13 ¢

Dest Output_Cam_Abs.Output

0«

image284.png
ontroller Organizer

4 .| Controller MAOC_Slotd
< Controller Tags
1 Controller Fault Handler
b % Power-Up Handler
4] Tasks
4 (® MainTask
4 L MainProgram
<7 Parameters and Local
@ MainRoutine
¥ Unscheduled
4 .| Motion Groups
4 .5 Motion_Group
(& MasterAxis
1 Ungrouped Axes
4] Assets
1 Add-On Instructions

4 | Data Tunec
4 .. 1/0 Configuration

4 B9 1736 Backplane, 1756-A7
[E2 [0] 1756-L73 MAOC_Slotd
4 ﬂ [1] 1756-M16SE Sercos
4 F5 SERCOS Network
£, 10 2094-BC01-MO1
4 fJ [2]1756-ENBT/A Ethernet

— Ag Ethemet _
(# 1411756-0B16I

-
’f

General General
Connection
Module Info i z .
Configuration Type: 1756-0B161 16 Point 10V-30V DC Isolated Output, Sink.
Vendor: Rockwell Automation/Allen-Bradley
Parent: Local
Name: 5
Description:
Module Definition
Series:
Revision: 3.001 .
Blectronic Keying: Compatible Module ,
Connection_ _ _ .Data_ 4
) Output Data Scheduled Data 1
- ——— —— —— ———————
-
—"’

image24.png
-l 1/ Configuration
&9 1756 Backplane, 1756-A10
ff [0]1756-L73 ServoMastery._Basics
=N\
@ SERCOS Network
£y 10 2004-BCOL-MONKinteth6000
-8 [311756-ENBT/A Ethernet %\
25 Ethemnet N,

10 Fauted 8

20ms E
axis or group

image285.png
@ Axis Properties - MasterAxis

Homing ~ Hookup ~ Tune Dynamics = Gains Output Limits Offset Faut Actions Tag
General Motion Planner Units m mw,mw Conversion

Motor Catelog Number: [MPL-B310PM {Change Catalog..|
R

QFMM, Coots
[Drive Enable Input

[Drive Enable Input Fault
Real Time Axs Information

Attribute 1:

w2 o

image286.png
<& Axis Properties - MasterAxis

Drive Counts/1.0 Revs
Based on 200000 Counts/Motor Rev

Drive Counts/Unwind
Based on 200000 Counts/Motor Rev

image287.png
B) (5 N) (N1 B 5 =4

0 0 i
0| 04} 08 12
H |

[1 |Outp Latch Type Unlatch Type Left Position Right Position |Duration| Enable...| Enable...|
[0]o Position Position 0.250000 0.499999[0.000000|Input |0
ition osition) . ! Input
[1]o Posi P 0.750000 0.999999 [0.000000 0
(21 Position and Enable | Position and Enable 0.500000 0.999999(0.000000(Input |1
[3]2 Enable Enable 0.000000 0.000000[0.000000(Input 2
[4]3 Position Duration 0.000000 0.000000 [5.000000{Input |2
[5|4 Enable Duration and Enable 0.000000 0.000000[5.000000(Input |2
[6|1 Position Position 0.650000 0.7500000.000000(Input |0

image288.png

image289.png
MasterAxis.ServoActionStatus

Output_Cam.Enable_Control.IP

A E
VE

Axis[0].Axis_Jog.Control.IP

— f—

— [—

MDOC
Axis MasterAxis EN =
Execution Target 1 DN =
HCER>—

Motion Control Output_Cam.Disable_Control
Disarm Type All

MOV MoV

Source 0 Source 0

Dest Output_Cam.Output

04

Dest Output_Cam_Abs.Output

04

image290.png
£QuU HMI_ServoSystem_JogStop MAS
Equal J E Motion Axis Stop HCENY—
Source A MotionStateControl[0] Axis Axis01 [H(DN>—
2¢ Motion Control Axis01Control MAS[1] HERY>—
Source B MotionStateControl[S] Stop Type 0 HIPY—
S € HPCY—
¥
Axis01Control. MAS[1].PC {AXISD VelocityStandstillStatus I MOV-
— — [—t— Move
__________________ J | Source MotionStateControf4]
4 &
Dest MotionStateControl[0]
2€
Axis01Control MAS[1] ER MOV-
] E Move
Source 0
Dest MotionStateControl[0]
2€

image291.png
New Tag

Name:

Description:

<normal> P

Instance Name

ttribute Name VelocityStandstillWindow
ource ?
??

ﬁl Servo_Motion_Mastery -
controller scope

(mmmmmm————— e ~
Extemal T

i Access: Read/wite I -

'

f 1

Open Configuration

image292.png
T A e O e L C i

Ayis01 VelocityOffset .0
Axis01 VelocityStandstillStatus 1
Axis01 VelocityT hresholdStatus 0

-

B A T ST

image293.png
9 Coordinate System Propertes - C5 XY

General | Geometry Unis.

Offsets Dynamics Motion Planner Tag

Motion Group: | HyTechiotion v New Group.
Tipe: Catesian v
Dimension: & Transfom Dimenson: (05
0] Coordinate Axis Name- Coordination Mode
X1 [] [Prmary M
e [y - [primary ™

image294.png
Type: Cattesian
Transfom Dimension: 0
Link Lengths
L oo

L)

Zeo Angle Orentations.
21 00 Degiess

22 [o0 Degress

BT Degrees

image25.png
CIP Systems

0 = Initializing
1=Pre-Charge
2 = Stopped

3 = Starting

4 = Running

5 =Testing

6 = Stopping

7 = Aborting

8 = Faulted

9 = Start Inhibited

10 = Shutdown

image295.png
General | Geometyy Unis

Offsets Dynamics Motion Planner Tag

Coordination Unis:
s Name Conversion Ratio ‘Conversion Rato Unts.
XAV o T Fostion Unts/Coordinaton Unfs

VAXEV.

image296.png
General | Geometry Unts | Offsets | Dynamics | Mofion Planner Tag

Type: Cattesian Top View:
Transfom Dimension: 0
End Bffector Offses

e [0

xe: [00
3e: [00

Side View:
Base Offsets

®ib: [00

xab: (00

xab: (00

image297.png
General Geometry Unts Offsets Dynamics Motion Planner Tag

Mot Speod: [0 Comrraton Urkos
Mo Accoratin: (280 | ot Unt/s2

Mosir Dol (280 | ot Urk/s2
Mo Accl o152 | Cordnaton Ut =100 Vi Acos e

Mo Decl ek [TE23555 | oarraion Unk/s°3 = 100%f Max Do Tre

Postion Tolerance:

e Cooinaon s
Command Coorinaon s

image298.png
General Geometry Unts Offsets Dynamics Motion Plamner | Tag

[Master Delay Compensation
[Enable Master Postion Fiter

Master Posiion Fiter Bandvidth: 0.1 Hertz

image299.png
General Geometry Unts Offsets Dynamics Motion Planner Tag

Tee Bae
Data Type: COORDINATE_SYSTEM

Scope: 1 Coord_Moton_Bend_Crcle_Dismond_Sauare
Biemal Fead/Wite

image300.png
Ny

image301.png
Name | General | Display | Pens I X-Aodis I Y-Aais I Template I Sampling I Start Trigger | Stop Trigger

V| Display chart title

| Display progress bar while loading historical data
Chart style
Standard
@ XY Plot
X-Bis pen:

[C5_xv.ActualPosition{0]

image302.png
RSTrendX Pr~ne
" A—

Name GEeraI]Dlsplay Pens | X-Auis | Y-Axis | Template | Sampling | Start Trigger | Stop Trigger

Pen Attributes

3]

Tag\Bxpr.
CS_XY ActualPosition[0

2

CS_XY ActualPosition[1]

Color

Visble | Width | Type Stde | Marker M
Off 1 Analog None 0.000(
Analog None 0.000(

image303.png

image304.png
L <Qlandald
@ XY Plot
Kobis pen:

C_XY.AcluaIPosition[‘I]

image26.png
Axis_Disable V-

F——— Move

Source 1

Dest AxisEnableDisable
0¢

Axis_Disable oV-

/] Move

Source 0

Dest AxisEnableDisable

od
! SSV-
1| et system value

Class Name Axis

Instance Name ~ Axis01

Atribute Name InhibitAxis

Source AxisEnableDisable
o€

image305.png
Add - - Remove

image306.png
General Fault Type: Non Major Faut ~

Scan Times (glapsed time):

Max: 324 (us) Reset Max

Last: 127 {us)

image307.png
12 Axis Properties - XAxisV

General MonPlamerIUnls Conva:imle

=

B

Motion Group: HyTechMotion

New Group

image308.png
£1-E3 Motion Groups

image309.png
NewTag X

12 E—

Descipir ==
Heb

Vs [

Ty Bese | [Comecion

s For

(oo Tomhwre st

Scops: [0 Cond Moton_Blend_Cick..

Btend [eaduie S

St

O Corstan

] Open CODRDINATE_SYSTEM Configuration

image310.png
Coordinate System Wizard C5_VX - General

Motion Group: | HyTechotion v New Group.
Tipe: Catesian v
Dimension; & Transfom Dimension: [0+
0] Coordinate Axis Name- Coordination Mode
X[] [Prmary M
e [mev 1 [Frinary ™

image311.png

image312.png
MCC

Motion Coordinated Circular Move

Coordinate System cs_xy
Mation Control MCCM_PATH2D_DRAW1
Move Type DrawPath[Pathindex] MoveType
0
Position DrawPath[Pathindex] Position[0]
XAxisV ”
YAxisV ”
Circle Type DrawPath[Pathindex] CircleType
0
Via/Center/Radius DrawPath[Pathindex] ViaCenterRadius[0]
Direction DrawPath[Pathindex] Direction
0
Speed PathSpeed
30e
Speed Units Units per sec
Accel Rate PathAccelTrapezoidal
200
Accel Units Units per sec2
Decel Rate PathDecelTrapezoidal
200
Decel Units Units per sec2
Profile Trapezoidal
Accel Jerk 1000
Decel Jerk 1000
Jerk Units % of Time
Termination Type TermType
1e
Merge Disabled
Merge Speed Current
Command Tolerance 0
Lock Position 0
Lock Direction None
Event Distance 0

Calculated Data 0

»

CEND>——
[ECOND==
FCER>—
[BCIP ==
[BCAC ==
FCPCO—

image313.png
MCLM:

Mation Coordinated Linear Move
Coordinate System cs_xy
Moation Control ~ MCLM_PATH2D_DRAW1
Move Type DrawPath{Pathindex] MoveType

0

Position DrawPath[Pathindex] Position[0]

XAxisV ”
YAxisV ”
Speed PathSpeed
30e
Speed Units Units per sec
Accel Rate PathAccelTrapezoidal
200
Accel Units Units per sec2
Decel Rate PathDecelTrapezoidal
200
Decel Units Units per sec2
Profile Trapezoidal
Accel Jerk 1000
Decel Jerk 1000
Jerk Units % of Time
Termination Type TermType
1e
Merge Disabled
Merge Speed Current
Command Tolerance 0
Lock Position 0
Lock Direction None
Event Distance 0

Calculated Data 0

»

=CEND>——
[ECOND==
FCER>—
=CIP>—
cac>—
[BCPCom=

image314.png
Operand [Type Format | Description
g [CoommAT e [T Coordated grous of s,
Sreem
Tiston Coral | MOTIGNINSTRUSTIoN | 723 Sirocre e 5 355055 rracion SR PR
Tiove s ST, W, o7 BT | Tmmedate o7 | Seest e Hve T
Tag 0 = Absolute
1 = tncremental
Position REAL Array tag [] [coordination units]
Speed 'SINT, INT, DINT, or Immediate or | [coordination units]
N i
Speed Units ‘SINT, INT, or DINT| Immediate 0 = Units per Sec
1= % of asimum
= Unitsper Hastertni
7 = Master Units
‘Accel Rate SINT, INT, DINT, or Immediate or | [coordination units]
N b
R Ut S, W, or B[Tmmedne | 3 o s 5o
1= % of asimum
4 = Unitsper Hostertn
7 = Master Units
Decel Rate SINT, INT, DINT, or Immediate or | [coordination units]
N b
Dol [SOV, I, or BT [Tmmeite o - o ey 5o
1= % of asimum
4 = Unitsper Hostertn
7 = Master Units
e P e [et
1o sane
RS SI, I, BN, or | Trmedite or | ou must aways st value for e Acealand e ek sperands:
F i TR st iy e thevatves i Profle aperand
oo oe S s
Enter the jerk rates i hese Serk Ui,
0 = Units per sec®
BeceT | S, W B, | Tmed e 57| 1 - o of Mo
REAL a9 2 = % of Time
4 = Units per MasterUnit®
& = % of Time-aster Drven
Jerk Units ‘SINT, INT, or DINT| Immediate or 7 = Master Units

Tag

Use these values to get started.
Accel Jerk = 100 (% of Time)
00 (% of Time)

Decel Jerk

Jerk Units = 2

image27.png
=&l VO Configuration
-89 1756 Backplane, 1756-A7
ff [0]1756-L73 Servo_Motion_Mastery
-8 [1]1756-M16SE Motion_Sercos

g::’(;.se COS Network
o8) né-mam\ ENBT_SystemComms
£ Ethemet

8 1311756-1B16 InputCard
[5]1756-IF8 Analog_Input

image315.png
MCLM:

Motion Coordinated Linear Move EN>——
Coordinate System cs xy
Wotion Control_ _MCLM_PATH2D DRAWA_ DN D=
{Mme Type DrawPathjPathindex] Mov MmeType h)
2 ER>—
Nt EWM&T#HEEM
XAxisV 1P>—
YAxisV 7
Speed PathSpeed AC>—
30e
Speed Units Units per sec PC o=

Accel Rate PathAccelTrapezoidal

image316.png
SFS

Example of Coordinated Motion feature, 2-axis Cartesian coordiate system X & Y.

Using MCLM(Linear) and MCCM(Circular) Mation Instructions,
o lterate thru Data_driven Target Positions to Plot: Circle, Diamond, Square [CDS] profiles

NOTE: this tterative [index] example allows for Blending between Successive Target Positions
see OnLine Help of the MCLM instruction for more details on Blending & Termination Type.

Use: Trend-> Plot_XusY to see Graphic plot of the resultant X & Y CDSq. path

Place the Controller in RUN Mode and the sample program will Automatically Cycle

S E
JE

user_CyStart_PB.

—

Axis

MAH

Motion Axis Home

XaxisV

Mation Control ~ MAH_X

EN>—o
DN S
ERO—
P>—
PC o=

MAH

Motion Axis Home

Axis
Motion Control

YAxisV
MAH_Y

EN
DN S
ERO—
P>—
PC o=

image317.png
File Arith/Logical
Control

Length

Position

Mode

Dest

Expression

FALS1
17
16

ALL
DestPath[FALS1.POS].Position[0]

MOV

Tr Move

Hores LircleDiamondSquareScale4

ExpressionCircleDiamondSquarePath[FALS2 POS] Position[1{:Scale!

"‘~-_~ 3
Dest ~=~X("Scake_)
PRI T
+
1
1
1
1
1
1
H
File ArithLogical o=~ !
Control __~~ FaLs2
Length’ 117
_pesition G
Mode 1ALL
Dest

DestPam[FALSlPOSI,PDsitillnHl

S0

EN D
DN
ER)—

image318.png
IE DeslPatt'{-l.lPositiot;. T

 DestPath{1] Position[0] 0.0

- DestPath[1]Position[1] 2.0

- DestPath[1].Position[2] 0.0

image319.png
)

\

image320.png
This sample uses a Tag to select TermType=No_Settie(1)
user can change this view the affects of other Termination types on resultant Path.

CommandExecuting.0 CircleDiamondSquareComplete MOV- SSV-
[— s — love Set System Value
Source TermTypeSelect Class Name COORDINATESYSTEM
1 ¢ Instance Name CS_XY
Dest TermType Aftribute Name CommandPositionTolerance
1€ Source CircleDiamondSquareCommandTolerance
b 0.01 ¢

image321.png
-SSV-

Set System Value

Class Name ‘COORDINATESYSTEM
Instance Name CS_XY
Aftribute Name CommandPositionTolerance

Source CircleDiamondSquareCommandTolerance
0.01 ¢

image322.png
CommandExecuting.0 FALS1.DN FALS2DN FALS3DN FALS4DN CircleDiamondSquareComplete -JSR:

[—] s s e s— e Jump To Subroutine

Routine Name DrawAlongPath2D
Input Par 17
Input Par DestPath

Return Par CircleDiamondSquareComplete

image323.png
CS_XY MovePendingQueueFullStatus

1 E
3/t

image324.png
MCCM_PATH2D_DRAW1.IP

— —

image28.png
AXIS_SERVO_DRVE

inhibited
Drive Name MotionAxis_1
Node. 10

Axis Fault No Fauts

image325.png
MCCM_PATH2D_DRAW1.EN MCCM_PATH2D_DRAW1.IP PathError ~CS_XY.MovePendingQueueFuliStatus

—— (— — (—— [— JE

image326.png

image327.png
— DrawPath et
—| DrawPath[0] feod]
+ DrawPath[0].CircleType 0

+ DrawPath[0].Direction 0

+ DrawPath[0].InstructionT ype. 0

+ DrawPath[0] MoveType 1

+ DrawPath[0].Position {...}

+ DrawPath[0]. ViaCenterR adius

image328.png

image329.png
1/0 Connector Pinout

Table 27 - IAM/AM 1/0 26-pin (10D) Connector

10D Pin Description Signal 10D Pin Description Signal

1 Hardware enable 24V DC power supply +24V_PWR 4 High speed registration 1input REG1

2 Hardware enable input ENABLE 15 Common for registration REG_COM
3 Common +24V_(OM 16 24V registration power REG_24V

4 Home switch 24V DC power supply +24V_PWR 17 High speed registration 2 input REG2

5 Home switch input HOME 18 Common for registration REG_COM
6 Common +24V_(OM 19 Reserved -

7 Positive overtravel 24V DC power supply +24V_PWR 20 Reserved -

8 Positive overtravel limit switch input 0T+ 2N Reserved -

9 Common +24V_(OM 2 Reserved -

10 Negative overtravel 24V DC power supply +24V_PWR 3 Analog output 0 DACO

n Negative overtravel limit switch input or- 24 Analog output common DAC_COM
12 Common +24V_(OM 25 Analog output 1 DAY

13 24V registration power REG_24V 26 Analog output common DAC_COM

image330.png
Figure 26 - Pin Orientation for 26-pin 1/0 (10D) Connector

| Pin18
Pin 26 —| — Pin9
Pin19 Pin1

Pin 10—

image331.png
TRN_Servo.RegEvent1Status TRN_Servo.ReglinputStatus TRN_Servo.RegEvent1ArmedStatus

1t TE JE {noP
TRN_Servo.Reg1inputStatus MAR
/ — Axis TRN_Servo [...| H(EN
Motion Control TRN_Servo_MAR DN -
Trigger Condition Positive_Edge HERD>—
Windowed Registration Disabled BP =
Min. Position 0 H(PC>—
Max. Position 0
Input Number 1
TRN_Servo.ServoActionStatus TRN_Reg1_ONS[0] MDR
I E {ons} Axis TRN_Servo [...] -CEN
Motion Control TRN_Servo_MDR DN -
MotionGroup.GroupSynced TRN_Reg1_ONS[1] Input Number 1 HER)>—

JE {ons]

TRN_Servo_MARER TRN_Reg1_ONS[2]
SEE r0N5'|
F] J

image332.png
J& Motion Group Properties - MotionGroup

2
Altemate 2 Update: 20 ms

General Fault Type: Non Major Fault

image333.png
4 (® VirtualMaster_50ms

b L AxPrg_Axis3
b L AxPrg_Axis4

& Task Properti
-

-’

onductTrackjng‘}

Cadidya

4 @ FaultHandling_125ms General €6figuration Program Schedule Montor
b & FirstOutFault L
4 ® MachineControl_47ms ,};g T
b L MainProgram e i o e
g N o N
4® PowerflexCDntrol_SSms/,f :Tngger: Axis Registration 1 \;
_->_5L Powerflex5325 - ! —
. ”,
(ATt} N A i R
4 55 Bttt Execute task if no event occurs within 24.000 ms
<7 Parameters and Local Tags
E@ MainRoutine . = ’ .
Priority: 4 =1 (Lo ber hi priority)
4 (® StateMachine_80ms 1 el tesesoinboryieks hohe J
b & StateMachine_Main Watchdog: 500.000 ms

b L VirtualMaster_MainProgram
4 1 AxTrainer_Control
< Parameters and Local Tags
F® MainRoutine
& Controls_Main
| Control_TrainerServo

| Camcel |

[v] Disable automatic output processing to reduce task overhead
Inhibit task

image334.png
TRN_Servo.RegEvent1Status TRN_Servo.Reg1inputStatus
1E

TRN_Servo.RegEvent1ArmedStatus

IE
P g = ak

TRN_Servo.ReglinputStatus TRN_Servo.RegEvent! ArmedStatus

— —

|{ TRN_ServoEventArmed

TRN_Servo.ServoActionStatus

| ——— [—

Bottom line: TRN_ServoEventArmed solenoid becomes energized when
TRN_Servo_MAR.IP is high, meaning MAR instruction TRN_Servo_MAR

has been enabled/armed and is in process so energize TRN_ServoEventArmed
which will de-energize TRN_ServoEventArmed so MAR instruction
TRN_Servo_MAR does not get armed more than once before registeration

is complete.

Once TRN_Servo.ServoActionStatus goes high the bottom rung keeps
TRN_ServoEventArmed pulled in so it acts as a latch while

TRN_Servo_MAR.PC is not true.

This configuration is recommended by Rockwell.

{noP
MAR
Axis ——_JBN Servo [...| HEN>—
Motion ComrmeRN_Servo_MAR} [SCDN D=
Trigger Cong#ion Positive_Edge HCER)—
A =j/Registration Disabled HIPY>—
0 (PCY—
/
uaf Position 0
1%
Input Number 1

TRN_Servo_MARER TRN_Reg1_ONS[2]

TRN_Servo.Reg1inputStatus

TRN_Servo.ServoActionStatus TRN_Reg1_ONS[0] MDR
7 E {ons} Axis TRN_Servo -CEN
Motion Control TRN_Servo_MDR DN =
MotionGroup.GroupSynced TRN_Reg1_ONS[1] Input Number 1 HER>—
TVE rons’
XL (=]
JE ronst
1t LONS]
TRN_Servo.ServoActionStatus TRN_Reg1_ONSI[3]
s/ = ONS Je=——
EventScanned
)

/ Fr—

TRN_Servo_MARPC EdgeFoundONS

Grab the actual postion from the servo controller when MAR instruction is in Process Complete.

GSV

Class Name

Sl I o
3K LONSJ

Instance Name TRN_Servo
Aftribute Name ActualPosition
Dest RegPosition

1845.7292 ¢

Axis

image29.png
Faulted M ™ Progiam Mode
No Forces ».| M Controller Fault

I Energy Storage OK
HoEchs 2| W 1/0 Not Responding
Redundancy

image335.png
oV oV SR
v e || Sonee emsion || Soree A g it
v e v
fre) o e

Souice - RegsteredEvent Poston!
1844 4052
Source . EEPEVTTTETTNETIES

image336.png
[T

LTTTITITIT
L

image337.png
TRN ServoRegEventStatus | TRN_Servo RegfinputStatus TRN_Servo RegEventt ArmedSatus

E E JE

TR Servo ReginputSatus TRIL Servo RegEventi ArmedStatus TRI_Servo ServoAclionStatus

) JE]

TR Servo AR

TR Sero [T HE—
frol TR Servo AR Enn)—

Trgger Condton Postive_Edge.

Vindowed Regaration Disabled aCEm
Hin Poston o Reo—
ax.Postion o
Input umber 1

—_=
TRN_Servo_MARPC TRN_ServoEvertamed
]]
TRN_Servo ServoActonStatus TRI_Regi_ONSIO] o
— [0 o s TR Servo LT [<EN
fon Corirol TRI_ Serve_WOR.
HotonGroup GroupSynced TRI_Reg!_ONSI1] i umber 1
IE [oNs}

TRI_Servo_MARER TR Reg1_ONSZ]
13 fons}

TR Servo ServoActonStatus TR Reg!_ONST]

L —oe—

TR Servo Regnputsiatus

)

(Grab the scualposton from he servo controter when MAR insiructon & n Process Conpt.
TR Servo_UARPC EdgeFoundONs

IE ons}

Class arme s
nstance Name TR_Servo
Atrouts lame. ActieFostion
Dest Regposton

image338.png
‘Conditon to Start Regtration Armed

Regstration Wattng for Sensor
EnsbleRegistration Regitration_Rearmed | AR
] Motion Arm Registration el
s A0
otion Control My_Registration o
Trigger Condton Postive_Edge
Windowed Registation Disabled ®
Hin. Positon o
®
Max. Positon o
re
Input Number 2
Regsiration Armed
Wattng for Sensor
Hy_Registration P Regsiration_Rearmed
Hy_Registraton €1
Regtration Armed
Wattng for Sensor

Hy_Registration PC Regstration_Rearmed

image339.png
Grab the actual postion from the servo controller when MAR instruction is in Process Compiete.
TRN_Servo_MAR PC GSV.
IE

JE Class Name Axis
Instance Name TRN_Servo
Aftrbute Name - ActualPostion
Dest RegPostion

73831134

TRN_Servo_MAR PC oV

JE Source RegisteredEvent_Postion|
73831134
Dest RegisteredEvent_Poston2
73821164

TRN_Servo_MAR PC
— —

Source A RegisteredEvent_Postion1
7383.113¢
Source B RegisteredEvent_Postion2

73821164
LS Productlength FromEvent]
099658203

JSR

Routine Name _Registration_Disarm
ISR

Routine leme Registration_Arm

image340.png
tion Direct Commands - TRN Servo:7, MAE, (16#0000) No Error -
cion Direct Commands - TRN Servo:s, Exccution Error.MAN, (1640022) You are trying to 3tert a Motion Axis one (MAH) comnd vhile rumaing a regitracion.

image341.png
o RegE veni2ArmedStatus |

TRN_Servo_MAR P

TRN_Servo ServoActionStatus.

JE

IE

G Motion DiectCommands - TN Seva)

Commands:

B MA
Qe man
e MAG
e ucD
AP
Moton Goup
Qe uGs
8 MGSD
Qe MGSR
8 MGSP
23 Motion Event
Qo maw
B MOW
Qe uaR
% MOR

A A

=
—

“| A DANGER: Executingmotion command wih conrollern
TS S S S

TRN_ServoEventarmed WAR
— s TR Seve
ction Conrol TR Serve_WAR
Troger Condton Negative Edge
Wadowed Regtraton Disabled
i Poston o
Max Postion o
oo 7)
TRN_Serve_ WARP TRN_Servekver
—= >
TRN_Servo_WAREN
il

TR Servo_MARPC TR ServoEvertarmed

—

image342.png
TRN e

image343.png
TRN_Servo ServoActonSiatus TR_Reg1_ONSI0] WoR

— =0 - s
oton Control TR
MotonGroup GroupSynced TRI_Reg1_ONSI1] nput Number
JE {ons}

TR Servo MARER TRN_Reg1_ONS2]
IE {ons}

TR Servo ServoctorStatus TRN_Reg?_ONS[3]
IE {ons}

TR Serve AR P TR Rt 0N
Lo 5 ¢ o

image344.png
TRN_Servo.Reg2inputStatus TRN_Servo. RegEvent2ArmedStatus.

——

—) F—

-

V) fomm. BARE [H SommSenemtiamsten
—

TRN_ServoEventarmed

MAR

TR Servo_MARP

s TR Servo | HEI—T
Molion Control TRN_Servo AR CDI s
Trgger Condon Negative Edge (-CER)—
Wadowed Regtraton Disabled (PY—

in.Posiion 0 ee—
e Fostion o
nput Humber 2

TR ServoEventamed

13

TR Servo_MAREN

IE

TR Servo_MARPC TR ServoEvertarmed

[~ ——

image30.png
-SSV-

Set System Value

Class Name Hodule
Instance Name MotionAxis_1
Attribute Name Hode

Source Kinetix6000_Currentiode
0¢

image31.png
&% SERCOS Network

am
&8 [211756-ENBT/A ENS_SystemComms

25 Etheret
) (311756-1B16 InputCard
[511756-IF8 Analog_Input

£ Axis01

SSV-
Set System Value

Class Name Module
Instance Name MotionAxis_1
Attribute Name Mode
Source Kineto5000_Currentiode
se

(End)

image32.png
AXIS_SERVO_DRIVE

inhibited T
otionAxs_1
10

PhysicalAxisFaut _ |

MotF eedbackr aut, FeedbackFaut
No Fauts

No Fauts

image33.png
Amplfier Catalog Number:

Motor Catalog Number: - M350t Hhoemnr
Loop Configuration: fres——
Drive Resolution: 000!

Drive Counts / | Motor Rev

image34.png
Type

AXIS_SERVO_DRIVE

Description

"Axis State Fauted |

Brive Name TotionAxis_1

Node 10
s Fault PhysicalAxisFautt |

Drive Fault MotFeedbackFaut, FeedbackFaut
Wodule Fauts. No Fauts

Attribute Error No Fauts

image35.png
As Assignment | Atirbute | Tag

Coarse Update Period: 12| ms n 05 increments)

T o
ot e

Scan Times (elapsed time):

Max: () [Reset Max

Last:)

image36.png
Time Synchronize 7—

Enable Time Synchronization

image37.png
-5 AxPrg_Axisl
(3 AxPrg_Axis2
£ APrg_Axis3
Prg,_Axi
9 MachineControl 47ms
(3 MainProgram
9 StateMachine_80ms

9 VirtualMaster_75ms

image38.png
General | Configuration | Program / Phase Schedule | Monitor |

Scan Times (Eapsed Time):
Max 19276000 ms CRemt]«
last: 0023000 ms

Interval Times (Elapsed Time Between Triggers):

l Max: 86.982000 ms
Mn: 63251000 ms
Task Overap Count

0

ok J[comel]

Apply

image39.png
Online Command - Marker Test

Command Status: Executing o

g Move asis manually thiough sufficient range fo Stop

lgenerate a marker pulse.

ait for command to complete.
e for et commad .

image40.png
-

Homing | Hookup’ Tune

Test Increment: 20

vy [poe

image41.png
£} User-Defined
L3 Strings
[0 Add-On-Defined
£ Predefined
£ Module-Defi
-3 Trends|
! is01_Position
AxisMonitoring
New_Trend
SCurve_Tuning
H, Logical Model
=-E31/0 Configuration
£ 1756 Backplane, 1756-A7
£ [0]1756-L73 Servo_Motion_Mastery
= B [1]1756-M16SE Motion_Sercos
£ SERCOS Network
£, 10 2094-BC01-MO1 MotionA:

- § [211756-ENBT/A ENBT_SystemCom
| 2 Crhernet i
E e ———

image42.png
General | Motion

Homing [Hookup

Tune

Fe===—======

7] Velocity Feedforward
Select the tuning operations you would like to preform.

DANGER: Starting tuning
procedure wih cortroller
in Program or Run Mode

causes axis motion.

A

| [_Heb

image43.png
Pasition Loop Bandwidth: Hertz

Load Inertia Ratio: 00 Load Inertia/Motor Inertia

DANGER:The Bandwidth determined by the tune process is
the masimum bandwicth. Increasing the bandwicth may
cause loop instabilty.

[ok][Cancel |[Hep

image44.png
e ——
Roleg 00 o e e W

Apply tune completed successfully. Tune dependent attributes have
been updated.

Refer to Help for a list of dependent attributes.

image45.png
egral. 6583577

Integrator Hold: | Enabled M|

e

1/mss

| Offset | Faut Actions | Tag

Fesdforward Gains
Velocty: 1000 %
Acceleration: 100.0 %

T T

|[Cree]

image46.png
[Enable Notch Fiter Frequency

Notch Filter Frequency:
[V] Enable Low-pass Output Fiter
Low-pass Output Fiter Bandwidth

Load Inertia/Motor Inettia

f0.013952264] % Rated/(Postion Units/s"2)

7167.296 {Position Units/s"2) at 100% Rated
00 Hertz
577.81165 Hertz

image47.png
General | Motion Planner | Units | Drive/Motor | Motor Feedback | Aux Feedback | Conversion

[Output [Limts | Offset | FautActins | Tag | L

Homing | Hookup | Tune [Dynamics | Gains
Postion Gains

Proportional: 283.48886 /s

Integral: 10.045738 mss

Velocty Gains

Proportional: 725.7315 s

Integral: 65.83577 1mss
g

Feedforward Gains
Velocity: 1000 %
Acceleration: 100.0 %

ok] [Ccane J[ooy [Heb]

image48.png
MRAT-

Hotion Run Axis Tuning (Cen:

Axis Axis01 () HDNY—

Motion Control MotionAxis_Tuning [(ER}—
HP—
Hpey—

WAAT
Hotion Apply Axis Tuning

Axis Axis01 ()
Wotion Control [[

image49.png
SSV-

Set System Value
Class Name Axis
Instance Name Axis01

Attribute Name TuningTravelLimit
Source 100

image50.png
=Rt

Ampifier Catalog Number: 2094 6001 MDY M|
Motor Cataog Mumber. MPL-81520U Vo2 (
Loap Corfiguraon. Postion Servo =
Orve Resokon T | omweCounts/ MotorRev = [
Dave Enabie input Checkng
Deve Enstie input Faut
Flael Time Ads Ffomaion
Arnte 1 Postion Ewor -]
Airute 2 Torgue Feedback -

image51.png

image52.png
Position

Velocity

image53.png

image54.png
] Drive Enable Input Faut
Real Time Ads Infomation

R - —

Aute 2 Torque Feedback.

image1.png
Section: 1

Introduction

Section: 2
Advanced Servo Motion Mastery Downloads Conversion Process

» 2. File Conversion

Section: 3
Emulation Module

» 3. Understanding Emulator
» 4. Emulation From Scratch

I Servo_Motion_Mastery_101_V20Emulated.ACD.txt
» 5. Studio 5000 Emulation

I Servo_Motion_Mastery_101_V28Emulated.ACD.txt
» 6. Emulating Gear Change Logic

+ Quiz 1: Emulation Quiz

Section: 4
Understanding Servo Rings

» 7. Troubleshooting a Servo Ring
» 8. Servo Motion Mastery Inhibiting An Axis
» 9. Servo Motion Mastery Inhibiting A Kinetix 6000 Drive

» 10. Servo Motion Mastery Motor Removal TroubleShooting

Section: 5
Understanding System Timing and Why

» 11. Course Rate Update Timing or Better Known as (CUP)

» 12. Periodic Task vs Continuous Task

Section: 6
Servo Testing and Tuning

» 13.Servo Commissioning Test
» 14.Servo Motion Mastery Trending A Servo HookUp Test
> 15. Quick Start to Servo Tuning

» 16. Tuning an S-Curve Movement from an Instruction

02:22

06:12

03:40

05:48

05:25

16:11

13:49

08:01

15:16

14:34

19:48

07:09

11:22

34:53

21:35

1/1 Section: 7

Servo Accel and Decel Jerks

» 17.Servo Accel Explained

> 18.Servo S-Curve Jerks Explained
0/1

Section: 8
Intro to Servo Conversion Constants
» 19. Using the Conversion Constants Calculate Tool

0/5
» 20. Understand a Simple Mechanical Drive System and Convert

Section: 9

Understanding Servo Cams
» 21.The Difference Between Linear Cams and Cubic Cams
» 22.Using a Servo Cam Editor
> 23.Final Summary of Servo Cams

I ServoMastery_SimpleMATC_Emulated.ACD.txt

Section: 10

0/a Servo Motion Mastery MATC Module

» 24, Motion Axis Time Cam Instruction Intro

& MATC_Intro.ACD.txt

» 25. Breakdown the Difference Between a Immediate and Pending MATC Use

& TimingCAMSs.ACD.txt
» 26. MATC Logic Used With a Virtual Axis With TroubleShooting
& TimingCAMsEmulation.ACD.txt
0/2
» 27.MATC Scaling Explained To Limit Confusion

> 28. MATC Instruction With A Natural Move Command

& SimpleMATC_WithMove ACD.txt

0/4

14:02

09:45

21:21

10:46

17:57

25:09

06:34

27:21

25:13

16:02

15:13

12:40

0/2

0/2

0/3

0/5

image55.png
Drive Courts/1.0mm
Based on 10000 Courts/Motor Rev

Drive Courts/Unwind
P B e Based on 10000 Courts/Motor Rev

image56.png
core o R

ot Se (T - = ot
o i [T - i Uit
Calculate Parameters

560000
80000
6000

image57.png

image58.png
Postion Uit Scaling. 1.9 o e 10 Motor Rev
Postion Ut Unwind: 1.9 m e 10 Urwind Cycle
Dive Resoluton: 1000000 Dive Counts/Motor Rev.
Conversion Constant 10000000 Diive Counts/mm
Posiion Unwind: 1000000 Diive Counts/Unwind Cycle

image59.png
"

PostionUnk Scalng 1.0 mn per 10 " MotorRey
Fositon Urit Unwind: 1.9 mn per 300 Unind Cycle
Cakcuiste Parameters

Calaiate

Diive Resaluon: reo000 Diive Counts/Motor Rev

Conversion Constant 7200000 Drive Counts/nm

Posiion Unwind: 2000 Diive Counts/Unwind Cycle

image60.png
Commands: Motion Axis Fault Reset
[e Mso o] A Auis01 Y@
@ MsF

@ masD
|- mash
@ MDD
@ MOF
v
Ceeuerr
o BmamETe
@ aS
@ e
@ 1ia)
% A
% HAG
% HCD

EagvErs

&\ DANGER: Exccuting motion command withcortoler i
Frogram or Fun Mode may cause ass molon

@

image61.png
&3 Motion Groups

G swing
G ‘*ﬂﬂj cut Carlex
B Prede gy copy CtisC
G Modi o e Ctisv
5 Trends | ©

Motion Generator...

image62.png
Commands:

@ MSO B
9 MSF
s MASD
Qe MASR
@ MDD
@ MOF

@ MDS
o MAFR

-6 Motion Move
g Mas
o MeH
G e
G MM
G MaG
G MCD

EagvErs

TR per vec.
AccelRste 1000

Accel Unts Units per sec2

DecelRste 1000 s
Decel Unts Urits per sec2

Profie. Tiapezoidal

BccelJek 00

DecelJerk 1000

Jek Unts % of Tme 2

&\ DANGER: Exccuting motion command withcortoler n
Frogam o un Mode may cause s molon

ot Grop Shadom]

(oo) [) [b0

image63.png
Awis01 AccelStatus
Avis! Actuaiccelerstion
Avist! ActuaPosiion
Avist! Actuaelociy

Decimal

image64.png
Here is an Rotary Axis example:
How to calculate conversion constants
A gearbox of 3:1 ratio used
Pulley attached to the gearbox output is 48:40

The drive constants are set to 1,000,000 Cts/Motor rev

(1,000,000 counts/Motor Rev) (3) (48)
Conv Contast = = 3,600,000 Counts per Unit

whatever the units are set to....this example does not note the units....but if you need to reference
something then says the units are a small box so:

3,600,000 counts per box
So in the servo's attributes tab under Conversions
Conversion Constant: 3600000 Counts per box based on 1000000 counts per motor rev

Postion Unwind: 3600000 Drive counts per Unwind based on 1000000 counts per motor rev

So the units being measured are a box, in this case the system is calculated to one
box equals 3,600,000 counts

image2.png
Section: 11

Servo Motion Mastery PCAM Module

» 29.Servo Motion Mastery PCAM Intro
» 30. Servo Mastery PCAM Explained In Detail
& PCAM_Intro_Emulated.ACD.txt
» 31.Building a PCAM From Scratch
I ServoAxis_PositionCam.ACD.txt
» 32. MAPC Common Issue With Master Reference
& PCAM_Intro.ACD.txt
> 33.MAPC PC Bit explained
» 34. MAPC Adding Common Health Checks
& PCAM_Intro_WithHealthChecks.ACD.txt
» 35.Use scaling in an MAPC instruction
» 36. MAPC Cam Lock Position Function Talk - Not program and Show

» 37.MAPC Master Lock Position Function - Not program and Show

Section: 12
Difference in a Position System And A Time System

» 38. Difference In AMAPC and a MATC

Quiz 2: MATC or MAPC

Section: 13

MAPC Cam Blending - Hardest Task for Most people

> 39. Starting from sctratch

> 40. Setting up the Physical Axis

> 41. Adding elements for the state controls

> 42. Adding our first MAPC

> 43. Adding the second MAPC for Cam blending

» 44, Showing a more in-depth view of the Cams blended with added features

Section: 14

Motion Cam Calculate Profile Instruction or MCCP Instruction Module

» 45, Using an MCCP Instruction
» 46. MCCP Instruction - Using Cam Elements
> 47.Using an MCCP then loading it into an MAPC instruction for use

I Servo_Motion_Mastery_101_lOVersion.ACD.txt

10:11

15:59

01:15:05

11:30

08:09

221

16:13

05:25

17:41

10:09

13:02

18:17

09:19

19:22

15:23

23:30

12:40

15:02

15:29

0/9 Section: 15
Servo Motion Mastery MAOC Module

> 48. MAOC Introduction

> 49. MAOC Cam Explained

» 50. MAOC Cam Output Control

» 51. MAOC Compensation Usage Explained

» 52. MAOC Input Enable Feature to Disarm or Arm Ouputs
> 53. MAOC Axis Setup - Avoid an ERR 35 code

& MAOC_ServoMastery_Emulation.ACD.txt

[7 MAOC_ServoMastery_EmulationV30.ACD.txt

[7 MAOC_ServoMastery_EmulationV28. ACD.txt

& MAOC_ServoMastery_EmulationLinearV28.ACD.txt

& MAOC_ServoMastery_EmulationRotaryV28.ACD.txt
» 54.MAOC Cam Used In a Linear Simple Application

& MAOC_ServoMastery_EmulationLinearV28.ACD.txt
» 55.MAOC Code Explained

& MAOC_ServoMastery.ACD.txt

0/2
Section: 16

Understanding Velocity Standstill

» 56. Using a Axis StandStill Bit

Section: 17
0/6
Coordinated Motion Section Cartesian Module

» 57.Intro to a Coordinated Motion System

» 58. Coordinated Motion Section MCCM Instruction Example

» 59. Coordinated Motion Section MCLM Instruction Example

» 60. Coordinated Motion Section Cartesian System Logic Explained

I Coord_Motion_Blend_Circle_Diamond_Square.ACD.txt

Section: 18

Closing Comments....Intro to Advanced Servo Mastery 2

0/3
» 61. Closing Comments

13:39

04:55

09:32

14:21

18:04

14:57

08:08

09:10

12:26

09:52

16:57

16:28

46:53

07:38

0/8

0/1

0/4

0/1

image65.png
Type: Base] [Connecton..]

40 element array -]

[FJConstart Accommodates 40 points of data,
not 40 cam profiles.

image66.png
<

Master:

|14.3

Linear
Linear

Linear

Linear

Linear

Linear

Linear

Linear

Linear

Linear

Linear

~ [StartSiope [0.0

End Slope | 0.0

Paosition:

|1 31667

il] v
Velocity: Acceleration: Jerk:
oo oo oo

(o)
|

WATC:
Motion Axis Time Cam [CEN.
| Axis Axis_01 ()
‘Totiqn Control MATC_1 (CoN;
Direction~«_ 0
(er
Cam Profie
Distance Scaling ance (P>—
250e
Time Scaling Time (PC
20e
Execution Mode 1
Execution Schedule Immediate
Lock Postion 0
Lock Direction 0

Instruction Mode Time Driven Mode

image67.png
WATC_1_Postioning _ Saturday, ay 05, 2016 82444 A

image68.png
+ [Waster [siave JType]~
0Jo0 05 Tlcubic }
£ K e
2[199%. |10 Jcubc
3 30033 [05933_[cubic
“fe0 [10 Jowe
5[50 _[14 Jowe
6 [6.0066. |10 [cubic
7[704 [05 [inear

[y

¢ i—

S - [Sasege o
‘ i]+ [Enasipe Joo
Master: Posion Velociy Acceersion ik o) e
ﬁm 10.816667 10.645081 ﬁm"s 3142906
(|

image69.png

image70.png
7 Cam Editor - Cam1Profile

vz o~ § §% iti
v $53 QQ®& sjave Position

7 Cam Editor - Cam1Profile

VAVE= Faaa
§ Jerk
|}os::::rt*"é' 7| T e =

image71.png
Specifying the Cam Profile

To execute a MATC instruction, a calculated Cam Profile data array tag must be specified. Cam Profile array tags may be created by the RSLogix
5000 tag editor or the MATC instruction using the built-in Cam Profile Editor, or by executing an Motion Calculate Cam Profile (MCCP) instruction on
an existing Cam array.

Tag Editor

Motion Active
Position Cam

cam \ MAPC | Motion

L Profile J MATC ™| Planner

Motion Active
Position Cam

______ 4+ Tag Creation

Data Modification

The data within the Cam Profile array can be modified at compile time using the Cam Profile Editor, or at run-time with the Motion Calculate Cam
Profile (MCCP) instruction. In the case of run-time changes, a Cam array must be created in order to use the MCCP instruction.

All but the status and type elements of the Cam Profile array element structure are "hidden” from the RSLogix 5000 tag editor. These hidden
elements are of no value. The status parameter is used to indicate that the Cam Profile array element has been calculated. If execution of a
camming instruction is attempted with any uncalculated elements in a cam profile, the instruction errors. The type parameter determines the type of
interpolation applied between this cam array element and the next cam element.

image72.png
] Redundancy Enabled

MATC o

1756-A10 10-Siot Cortrollogix Chasss

(] Use only the selected Secuty Authorty for Authentication and
Adhorization

image73.png
General | Moton Planner | Unés [Conversion [Homing | Dynamics” [Tag |

Maxium Speed £ Postion Unts/s
Mainum Accsleation: 1000 Postion Unts/&"2
Masimum Decsleration: 1000 Postion Unts/&"2
Maximum Acceleration derk: 10000 Postion Units/s™3 > 100% of Max Accel Tme
Masum Deceoton ok T Postan Uks™s < s of Max Docel e

o] o) [))

image74.png
65 Controller MATC Intro
Controlle Tags
Controllr Fault Handler
(23 Power-Up Handler
S Tasks.
68 MainTask
& @8 MainProgram

Program Tags
T MainRoutine
(53 Unscheduled Programs / Phases

G swings

G4 Add-On-Defined
G Predefined

3 Module-Defined
3 Trends

(Ene)

Vohopsaa T tm
b —

/7 Show: 45_CIP_DRIVE. 455

==l

=zl[DataType.

5 Vit 01T

“AXIS_VRTUA|

4

image3.png
Computer

4 5 3

7
Emumnr Emumvow \Emumrer Enutator Emuiator [Emutator [Enutator Emutator [I

i

I I I RSiinx RSLinx

For Help, press FL

image75.png
Alias For:

DataType: MOTION_INSTRUCTION EI

Scope: 2 MATC Into. -
e
Access:

Style: (=

Constant

(7] Open Configuation

image76.png
Lock Decton
Instruction lode Tme Driven Hode:

2

image77.png
MAS-

Hotion Axis Stop HCEN—
Axis Virtualaxis_01 ()
Wotion Control MAS DN)—
Stop Type Time Cam
Change Decel No IKER—
Decel Rate 0

HP—

Decel Units Units per sec2
Change Decel Jerk No HCPCI—
Decel Jerk 0

JerkUnits Units per sec3

image78.png
MAH-

Motion Axis Home: FCEN)-
Axis Virtualaxis_01 () FCDN)-
Motion Control 7 ER)>
HPy—
CPC)-

image79.png
Motion

cam \ uapc

cam

Profile J MATC

Data Modification

image80.png
HM|_ServoSystem_On
B

MAH-

JE Motion Axis Home: HCENY>—
Axis Virtualaxis_01 () HDN)>—
Motion Control ~ MAH ((ER)}—
Hp—
PO—
VirtualAxis_01 ServoActionStatus HMI_CamStart MATC
JF JF Motion Axis Time Cam HCEN>—]
Axis. Virtualaxis_01 ()
Motion Control MATC_01 HCON>—
Direction]
[CER—
CamProfie CAMProfie ()
Distance Scaling Distance () —
500€
Time Scaing TimeFrame [{PCY—
HAS
Hotion Axis Stop HcEn—|
Axis Virtualaxis_01 ()
Wotion Control MAS [DN)—
Stop Type Time Cam
Change Decel No ({ER—
Decel Rate 0
HP—
Decel Units Units per sec2
Change Decel Jerk No HCPCI—
Decel Jerk 0

JerkUnits Units per sec3

image81.png
A
Wotion Axis Teme Cam
Ads Vitualaxs 01 ()
Hotion Control - MATC_01
Drecton]

e
on>-|

R

CcamProfief CAMProfief0] ||
A A .
B

CAI_PROFLE £
CAN_PROFLE
CA_PROFLE
£ Cau_PROFLE
- CAWProrief3 Cau_PROFLE

image82.png
89 RsLogix Emuiate 5000 Chasss Monitor

St_View Opions_Aibleduies_Help

Congutr: [T56T

T

1 [

JL N

o Help.press 71

image83.png
B G - e

4 v oo

| CEED [Towe T -
L TR
E8 TR
220 02 [lnely
£ E .
3 -
3 -
Fefee oo fonar
e o3 e
- [Em=Ter
= RO i 1}
s Pt Vet [) (o=
fieeser JoteeesT oo oo oo [

image84.png

image4.png
Modue Type:

mulator - i 0K
1789-5IM 32 Paint Input/Output Simulator \—I

Slot:

image85.png
——MATC:
Motion Axis Time Cam EEN)—

Axis. Virtualaxis_01 ()
Wotion Control MATC_01
Direction 0
Cam Profile CAWProfie(0] ()
Distance Scaling Distance
s0.0€
Time Scaiing TimeFrame
2¢
Execution Mode 0
Execution Schedule Immediate
Lock Postion 0
Lock Direction 0

Instruction Mode Time Driven Mode

Jcon>mm
er—
Hee—

fceeom

image86.png

image87.png
Saturday, May 05, 201

R Vo Pograntirite CAH G
L

i
|— e

image88.png
To Start sequence, set Pend_CAM_Index=10 and press the HMI_Systen_On
EQU- QU £QU TON StartDelay. DN ———— Mk
Equal Equal Equal ‘Timer On Delay [CEN; JE Motion Axis Home ENY—
Source A Axis_2DriveFaul Source A KinetixFautCode Source A Pend_CAM_index Timer StartDelay Axis Axis_2 () (DN
16#0000_0000 0 60 ¢ Preset 4000 €-(DN>— Motion Control Home_2 ER—
Source B [Source B 0 Source B 10 Accum 04 Py—

MOV-

Move
Source 0

Dest Pending_Cam_Count
1¢

MOV-

Move
Source 20

Dest Pend_CAM_Index
60

image89.png
Execute First Pofile

v HATC- ov-
Equal oton Axis Tme Cam <en Wove
Source A Pend_CAM_ndex s a2) Source &
0 Hoton Control Intial CAM Corlrol aCON e
Source 5 Drecton Intial CAH Directon Dest Pend_CAM_index
06 CER— 604
Camprofie Time_CAU_Profiel0] ()
Distance Scaing Inta_CATL Master_Scale (<P
S00e
TmeScaing IntaCAU Slave_Scale faCPCom
10e
Execution Hode Once
Exccuton Schedule Inmediste
LockPostion o
Lock Drecton None:
Istruction Wode Tme Drven Mode

image90.png
Equal

Execute Pending Profies.

Pendng Profies have direction setto reverse fo make i casier o see resuls

When complets wi Pending Profies, execute fnal Profie. Diection set fo forward o make essier o se@ resuls.

Source A Pend_CAM_index

Source B

704

LE:
Less Than (A<B)

Source A Pending_Cam_Count

24

Source B Max_CAM_Cycks

24

QU

Equal

Source A Max_CAM_Cycks

Source 8 Pending_Cam_Count

24

24

Dest Pend_CAM_index

#xis_2TmeCamPendngStatus waTC-
[— oton Axis Tme Cam e
Axis s 2
otion Control _Pending_CAll Control aCDImm
Dircton Pending_CAM Drecton
0e_lcem—
Cam Profie Time_CAM_Profie(0] ()
Distance Scaing sl CAH Waster_Scake [(P>—
s00e
Time Scaing e CAM Save_Scale PO
o
Executeon lode once
Executon Scheduie Pendng
Lock Postion o
Lock Drecton one
Instuction lode Trme Drven Wode
00
adg
Source A Pendng_Cam_Count
24
Source® 1
Dest Pendng_Cam_Count
24
Run_Fnal CAW Axis_2 TmeCamPendingStatus aC-
s — — Hoton Axis Tme Cam e
Axis a2 (2
Hoton Control Final_Cam Control RIS
Dircton il CAM Drecton
o [eR—
Cam Profie Time_CAM_Profie(0] ()
Distance Scaing inta_CAH Wasier_Scake [(P>—
s00e
Time Scalng e CAM Siave_Scale (PO
o
Execution lode once
Executon Schedule Pending
Lock Postion o
Lock Diecton one
Instuction lode Time Driven Mode
2
ov-
Wove
Source n
Dest_Pend_CAM_index
104
Run_Final_CAN ov-
IE Wove
Source n

104

image91.png
Equal

Source A Pend_CAM_ndex

Source 8

104
™

Axis_2TmeCamPendingStatus Axis_2 TimeCamStatus

| — -)

OV-

Wove
Source 0

Dest Pend_CAM_index
104

image92.png
To Start sequencs, set Pend_CAM_ndex=10 and press the HUL_Systen_On
HiHLSystem_ON v
o el
Source A Pend_CAM_ndex
0l
Source 0

image93.png

image94.png
WATC:

oton A Time Cam
i s 2 @
ot Control ta_CAl ool
Drecion i Gl Drecton

oe
camprotie Tine_cA pron

Dstance Scaing Bl CAN aster_Scale
s00¢

Teme Scaing
05
Execution Hode once
Executon Schedule Immedite
Lock Positon 0
Lock Direction None

nstruction Mode Time Driven Hode.

cen-
0N
cer>-
P
PC

